Source code for qibocal.protocols.flux_dependence.resonator_flux_dependence

from dataclasses import dataclass, field
from typing import Optional

import numpy as np
import numpy.typing as npt
from qibolab import AcquisitionType, AveragingMode, Parameter, PulseSequence, Sweeper
from scipy.optimize import curve_fit

from qibocal.calibration import CalibrationPlatform

from ... import update
from ...auto.operation import Data, Parameters, QubitId, Results, Routine
from ...config import log
from ...result import magnitude, phase
from ..utils import (
    GHZ_TO_HZ,
    HZ_TO_GHZ,
    extract_feature,
    readout_frequency,
    table_dict,
    table_html,
)
from . import utils

__all__ = ["ResonatorFluxParameters", "resonator_flux"]


[docs] @dataclass class ResonatorFluxParameters(Parameters): """ResonatorFlux runcard inputs.""" freq_width: int """Width for frequency sweep relative to the readout frequency [Hz].""" freq_step: int """Frequency step for sweep [Hz].""" bias_width: Optional[float] = None """Width for bias sweep [V].""" bias_step: Optional[float] = None """Bias step for sweep [a.u.]."""
@dataclass class ResonatorFluxResults(Results): """ResonatoFlux outputs.""" frequency: dict[QubitId, float] = field(default_factory=dict) """Readout frequency.""" coupling: dict[QubitId, float] = field(default_factory=dict) """Qubit-resonator coupling.""" asymmetry: dict[QubitId, float] = field(default_factory=dict) """Asymmetry between junctions.""" sweetspot: dict[QubitId, float] = field(default_factory=dict) """Sweetspot for each qubit.""" matrix_element: dict[QubitId, float] = field(default_factory=dict) """Sweetspot for each qubit.""" fitted_parameters: dict[QubitId, float] = field(default_factory=dict) ResFluxType = np.dtype( [ ("freq", np.float64), ("bias", np.float64), ("signal", np.float64), ("phase", np.float64), ] ) """Custom dtype for resonator flux dependence.""" @dataclass class ResonatorFluxData(Data): """ResonatorFlux acquisition outputs.""" resonator_type: str """Resonator type.""" qubit_frequency: dict[QubitId, float] = field(default_factory=dict) """Qubit frequencies.""" bare_resonator_frequency: dict[QubitId, int] = field(default_factory=dict) """Qubit bare resonator frequency power provided by the user.""" charging_energy: dict[QubitId, float] = field(default_factory=dict) """Qubit charging energy in Hz.""" data: dict[QubitId, npt.NDArray[ResFluxType]] = field(default_factory=dict) """Raw data acquired.""" def register_qubit(self, qubit, freq, bias, signal, phase): """Store output for single qubit.""" self.data[qubit] = utils.create_data_array( freq, bias, signal, phase, dtype=ResFluxType ) def _acquisition( params: ResonatorFluxParameters, platform: CalibrationPlatform, targets: list[QubitId], ) -> ResonatorFluxData: """Data acquisition for ResonatorFlux experiment.""" delta_frequency_range = np.arange( -params.freq_width / 2, params.freq_width / 2, params.freq_step ) delta_offset_range = np.arange( -params.bias_width / 2, params.bias_width / 2, params.bias_step ) # taking advantage of multiplexing, apply the same set of gates to all qubits in parallel sequence = PulseSequence() ro_pulses = {} qubit_frequency = {} bare_resonator_frequency = {} charging_energy = {} matrix_element = {} offset = {} freq_sweepers = [] offset_sweepers = [] for q in targets: ro_sequence = platform.natives.single_qubit[q].MZ() ro_pulses[q] = ro_sequence[0][1] sequence += ro_sequence qubit = platform.qubits[q] offset0 = platform.config(qubit.flux).offset freq_sweepers.append( Sweeper( parameter=Parameter.frequency, values=readout_frequency(q, platform) + delta_frequency_range, channels=[qubit.probe], ) ) offset_sweepers.append( Sweeper( parameter=Parameter.offset, values=offset0 + delta_offset_range, channels=[qubit.flux], ) ) qubit_frequency[q] = platform.config(qubit.drive).frequency bare_resonator_frequency[q] = platform.calibration.single_qubits[ q ].resonator.bare_frequency matrix_element[q] = platform.calibration.get_crosstalk_element(q, q) offset[q] = -offset0 * matrix_element[q] charging_energy[q] = platform.calibration.single_qubits[q].qubit.charging_energy data = ResonatorFluxData( resonator_type=platform.resonator_type, qubit_frequency=qubit_frequency, bare_resonator_frequency=bare_resonator_frequency, charging_energy=charging_energy, ) results = platform.execute( [sequence], [offset_sweepers, freq_sweepers], nshots=params.nshots, relaxation_time=params.relaxation_time, acquisition_type=AcquisitionType.INTEGRATION, averaging_mode=AveragingMode.CYCLIC, ) # retrieve the results for every qubit for i, qubit in enumerate(targets): result = results[ro_pulses[qubit].id] data.register_qubit( qubit, signal=magnitude(result), phase=phase(result), freq=freq_sweepers[i].values, bias=offset_sweepers[i].values, ) return data def _fit(data: ResonatorFluxData) -> ResonatorFluxResults: """PostProcessing for resonator_flux protocol. After applying a mask on the 2D data, the signal is fitted using the expected frequency vs flux behavior. The fitting procedure requires the knowledge of the bare resonator frequency, the charging energy Ec and the maximum qubit frequency which is assumed to be the frequency at which the qubit is placed. The protocol aims at extracting the sweetspot, the flux coefficient, the coupling, the asymmetry and the dressed resonator frequency. """ coupling = {} resonator_freq = {} asymmetry = {} fitted_parameters = {} sweetspot = {} matrix_element = {} for qubit in data.qubits: qubit_data = data[qubit] biases = qubit_data.bias frequencies = qubit_data.freq signal = qubit_data.signal # extract signal from 2D plot based on SNR mask frequencies, biases = extract_feature( frequencies, biases, signal, "min" if data.resonator_type == "2D" else "max" ) # define fit function def fit_function( x: float, g: float, d: float, offset: float, normalization: float ): """Fit function for resonator flux dependence.""" return utils.transmon_readout_frequency( xi=x, w_max=data.qubit_frequency[qubit] * HZ_TO_GHZ, xj=0, d=d, normalization=normalization, offset=offset, crosstalk_element=1, charging_energy=data.charging_energy[qubit] * HZ_TO_GHZ, resonator_freq=data.bare_resonator_frequency[qubit] * HZ_TO_GHZ, g=g, ) try: popt, _ = curve_fit( fit_function, biases, frequencies * HZ_TO_GHZ, bounds=( [0, 0, -1, 0.5], [0.5, 1, 1, +1], ), maxfev=100000, ) fitted_parameters[qubit] = { "w_max": data.qubit_frequency[qubit] * HZ_TO_GHZ, "xj": 0, "d": popt[1], "normalization": popt[3], "offset": popt[2], "crosstalk_element": 1, "charging_energy": data.charging_energy[qubit] * HZ_TO_GHZ, "resonator_freq": data.bare_resonator_frequency[qubit] * HZ_TO_GHZ, "g": popt[0], } matrix_element[qubit] = popt[3] sweetspot[qubit] = (np.round(popt[2]) - popt[2]) / popt[3] resonator_freq[qubit] = fit_function(sweetspot[qubit], *popt) * GHZ_TO_HZ coupling[qubit] = popt[0] asymmetry[qubit] = popt[1] except ValueError as e: log.error( f"Error in resonator_flux protocol fit: {e} " "The threshold for the SNR mask is probably too high. " "Lowering the value of `threshold` in `extract_*_feature`" "should fix the problem." ) return ResonatorFluxResults( frequency=resonator_freq, coupling=coupling, matrix_element=matrix_element, sweetspot=sweetspot, asymmetry=asymmetry, fitted_parameters=fitted_parameters, ) def _plot(data: ResonatorFluxData, fit: ResonatorFluxResults, target: QubitId): """Plotting function for ResonatorFlux Experiment.""" figures = utils.flux_dependence_plot( data, fit, target, utils.transmon_readout_frequency ) if fit is not None: fitting_report = table_html( table_dict( target, [ "Coupling g [MHz]", "Dressed resonator freq [Hz]", "Asymmetry", "Sweetspot [V]", "Flux dependence [V]^-1", "Chi [MHz]", ], [ np.round(fit.coupling[target] * 1e3, 2), np.round(fit.frequency[target], 6), np.round(fit.asymmetry[target], 3), np.round(fit.sweetspot[target], 4), np.round(fit.matrix_element[target], 4), np.round( (data.bare_resonator_frequency[target] - fit.frequency[target]) * 1e-6, 2, ), ], ) ) return figures, fitting_report return figures, "" def _update( results: ResonatorFluxResults, platform: CalibrationPlatform, qubit: QubitId ): update.dressed_resonator_frequency(results.frequency[qubit], platform, qubit) update.readout_frequency(results.frequency[qubit], platform, qubit) update.coupling(results.coupling[qubit], platform, qubit) update.flux_offset(results.sweetspot[qubit], platform, qubit) update.sweetspot(results.sweetspot[qubit], platform, qubit) resonator_flux = Routine(_acquisition, _fit, _plot, _update) """ResonatorFlux Routine object."""