Source code for qibocal.protocols.flux_dependence.resonator_flux_dependence

from dataclasses import dataclass, field
from typing import Optional

import numpy as np
import numpy.typing as npt
from qibolab import AcquisitionType, AveragingMode, ExecutionParameters
from qibolab.platform import Platform
from qibolab.pulses import PulseSequence
from qibolab.qubits import QubitId
from qibolab.sweeper import Parameter, Sweeper, SweeperType
from scipy.optimize import curve_fit

from ... import update
from ...auto.operation import Data, Parameters, Results, Routine
from ...config import log
from ..utils import GHZ_TO_HZ, HZ_TO_GHZ, extract_feature, table_dict, table_html
from . import utils


[docs]@dataclass class ResonatorFluxParameters(Parameters): """ResonatorFlux runcard inputs.""" freq_width: int """Width for frequency sweep relative to the readout frequency [Hz].""" freq_step: int """Frequency step for sweep [Hz].""" bias_width: Optional[float] = None """Width for bias sweep [V].""" bias_step: Optional[float] = None """Bias step for sweep [a.u.]."""
[docs]@dataclass class ResonatorFluxResults(Results): """ResonatoFlux outputs.""" resonator_freq: dict[QubitId, float] = field(default_factory=dict) """Readout frequency.""" coupling: dict[QubitId, float] = field(default_factory=dict) """Qubit-resonator coupling.""" asymmetry: dict[QubitId, float] = field(default_factory=dict) """Asymmetry between junctions.""" sweetspot: dict[QubitId, float] = field(default_factory=dict) """Sweetspot for each qubit.""" matrix_element: dict[QubitId, float] = field(default_factory=dict) """Sweetspot for each qubit.""" fitted_parameters: dict[QubitId, float] = field(default_factory=dict)
ResFluxType = np.dtype( [ ("freq", np.float64), ("bias", np.float64), ("signal", np.float64), ("phase", np.float64), ] ) """Custom dtype for resonator flux dependence."""
[docs]@dataclass class ResonatorFluxData(Data): """ResonatorFlux acquisition outputs.""" resonator_type: str """Resonator type.""" qubit_frequency: dict[QubitId, float] = field(default_factory=dict) """Qubit frequencies.""" bare_resonator_frequency: dict[QubitId, int] = field(default_factory=dict) """Qubit bare resonator frequency power provided by the user.""" charging_energy: dict[QubitId, float] = field(default_factory=dict) """Qubit charging energy in Hz.""" data: dict[QubitId, npt.NDArray[ResFluxType]] = field(default_factory=dict) """Raw data acquired."""
[docs] def register_qubit(self, qubit, freq, bias, signal, phase): """Store output for single qubit.""" self.data[qubit] = utils.create_data_array( freq, bias, signal, phase, dtype=ResFluxType )
[docs]def _acquisition( params: ResonatorFluxParameters, platform: Platform, targets: list[QubitId] ) -> ResonatorFluxData: """Data acquisition for ResonatorFlux experiment.""" sequence = PulseSequence() ro_pulses = {} qubit_frequency = {} bare_resonator_frequency = {} charging_energy = {} for qubit in targets: qubit_frequency[qubit] = platform.qubits[qubit].drive_frequency bare_resonator_frequency[qubit] = platform.qubits[ qubit ].bare_resonator_frequency charging_energy[qubit] = -platform.qubits[qubit].anharmonicity ro_pulses[qubit] = platform.create_qubit_readout_pulse(qubit, start=0) sequence.add(ro_pulses[qubit]) # define the parameters to sweep and their range: delta_frequency_range = np.arange( -params.freq_width / 2, params.freq_width / 2, params.freq_step ) freq_sweeper = Sweeper( Parameter.frequency, delta_frequency_range, [ro_pulses[qubit] for qubit in targets], type=SweeperType.OFFSET, ) delta_bias_range = np.arange( -params.bias_width / 2, params.bias_width / 2, params.bias_step ) sweepers = [ Sweeper( Parameter.bias, delta_bias_range, qubits=[platform.qubits[qubit] for qubit in targets], type=SweeperType.OFFSET, ) ] data = ResonatorFluxData( resonator_type=platform.resonator_type, qubit_frequency=qubit_frequency, bare_resonator_frequency=bare_resonator_frequency, charging_energy=charging_energy, ) options = ExecutionParameters( nshots=params.nshots, relaxation_time=params.relaxation_time, acquisition_type=AcquisitionType.INTEGRATION, averaging_mode=AveragingMode.CYCLIC, ) for bias_sweeper in sweepers: results = platform.sweep(sequence, options, bias_sweeper, freq_sweeper) # retrieve the results for every qubit for qubit in targets: result = results[ro_pulses[qubit].serial] sweetspot = platform.qubits[qubit].sweetspot data.register_qubit( qubit, signal=result.magnitude, phase=result.phase, freq=delta_frequency_range + ro_pulses[qubit].frequency, bias=delta_bias_range + sweetspot, ) return data
[docs]def _fit(data: ResonatorFluxData) -> ResonatorFluxResults: """PostProcessing for resonator_flux protocol. After applying a mask on the 2D data, the signal is fitted using the expected resonator_freq vs flux behavior. The fitting procedure requires the knowledge of the bare resonator frequency, the charging energy Ec and the maximum qubit frequency which is assumed to be the frequency at which the qubit is placed. The protocol aims at extracting the sweetspot, the flux coefficient, the coupling, the asymmetry and the dressed resonator frequency. """ coupling = {} resonator_freq = {} asymmetry = {} fitted_parameters = {} sweetspot = {} matrix_element = {} for qubit in data.qubits: qubit_data = data[qubit] biases = qubit_data.bias frequencies = qubit_data.freq signal = qubit_data.signal # extract signal from 2D plot based on SNR mask frequencies, biases = extract_feature( frequencies, biases, signal, "min" if data.resonator_type == "2D" else "max" ) # define fit function def fit_function( x: float, g: float, d: float, offset: float, normalization: float ): """Fit function for resonator flux dependence.""" return utils.transmon_readout_frequency( xi=x, w_max=data.qubit_frequency[qubit] * HZ_TO_GHZ, xj=0, d=d, normalization=normalization, offset=offset, crosstalk_element=1, charging_energy=data.charging_energy[qubit] * HZ_TO_GHZ, resonator_freq=data.bare_resonator_frequency[qubit] * HZ_TO_GHZ, g=g, ) try: popt, _ = curve_fit( fit_function, biases, frequencies * HZ_TO_GHZ, bounds=( [0, 0, -1, 0.5], [0.5, 1, 1, +1], ), maxfev=100000, ) fitted_parameters[qubit] = { "w_max": data.qubit_frequency[qubit] * HZ_TO_GHZ, "xj": 0, "d": popt[1], "normalization": popt[3], "offset": popt[2], "crosstalk_element": 1, "charging_energy": data.charging_energy[qubit] * HZ_TO_GHZ, "resonator_freq": data.bare_resonator_frequency[qubit] * HZ_TO_GHZ, "g": popt[0], } matrix_element[qubit] = popt[3] sweetspot[qubit] = (np.round(popt[2]) - popt[2]) / popt[3] resonator_freq[qubit] = fit_function(sweetspot[qubit], *popt) * GHZ_TO_HZ coupling[qubit] = popt[0] asymmetry[qubit] = popt[1] except ValueError as e: log.error( f"Error in resonator_flux protocol fit: {e} " "The threshold for the SNR mask is probably too high. " "Lowering the value of `threshold` in `extract_*_feature`" "should fix the problem." ) return ResonatorFluxResults( resonator_freq=resonator_freq, coupling=coupling, matrix_element=matrix_element, sweetspot=sweetspot, asymmetry=asymmetry, fitted_parameters=fitted_parameters, )
[docs]def _plot(data: ResonatorFluxData, fit: ResonatorFluxResults, target: QubitId): """Plotting function for ResonatorFlux Experiment.""" figures = utils.flux_dependence_plot( data, fit, target, utils.transmon_readout_frequency ) if fit is not None: fitting_report = table_html( table_dict( target, [ "Coupling g [MHz]", "Dressed resonator freq [Hz]", "Asymmetry", "Sweetspot [V]", "Flux dependence [V]^-1", "Chi [MHz]", ], [ np.round(fit.coupling[target] * 1e3, 2), np.round(fit.resonator_freq[target], 6), np.round(fit.asymmetry[target], 3), np.round(fit.sweetspot[target], 4), np.round(fit.matrix_element[target], 4), np.round( ( data.bare_resonator_frequency[target] - fit.resonator_freq[target] ) * 1e-6, 2, ), ], ) ) return figures, fitting_report return figures, ""
[docs]def _update(results: ResonatorFluxResults, platform: Platform, qubit: QubitId): update.readout_frequency(results.resonator_freq[qubit], platform, qubit) update.coupling(results.coupling[qubit], platform, qubit) update.asymmetry(results.coupling[qubit], platform, qubit) update.sweetspot(results.sweetspot[qubit], platform, qubit) update.crosstalk_matrix(results.matrix_element[qubit], platform, qubit, qubit)
resonator_flux = Routine(_acquisition, _fit, _plot, _update) """ResonatorFlux Routine object."""