from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import numpy.typing as npt
from qibolab import AcquisitionType, AveragingMode, Parameter, PulseSequence, Sweeper
from scipy.optimize import curve_fit
from qibocal.calibration import CalibrationPlatform
from ... import update
from ...auto.operation import Data, Parameters, QubitId, Results, Routine
from ...config import log
from ...result import magnitude, phase
from ..utils import (
GHZ_TO_HZ,
HZ_TO_GHZ,
extract_feature,
readout_frequency,
table_dict,
table_html,
)
from . import utils
__all__ = ["ResonatorFluxParameters", "resonator_flux"]
[docs]
@dataclass
class ResonatorFluxParameters(Parameters):
"""ResonatorFlux runcard inputs."""
freq_width: int
"""Width for frequency sweep relative to the readout frequency [Hz]."""
freq_step: int
"""Frequency step for sweep [Hz]."""
bias_width: Optional[float] = None
"""Width for bias sweep [V]."""
bias_step: Optional[float] = None
"""Bias step for sweep [a.u.]."""
@dataclass
class ResonatorFluxResults(Results):
"""ResonatoFlux outputs."""
frequency: dict[QubitId, float] = field(default_factory=dict)
"""Readout frequency."""
coupling: dict[QubitId, float] = field(default_factory=dict)
"""Qubit-resonator coupling."""
asymmetry: dict[QubitId, float] = field(default_factory=dict)
"""Asymmetry between junctions."""
sweetspot: dict[QubitId, float] = field(default_factory=dict)
"""Sweetspot for each qubit."""
matrix_element: dict[QubitId, float] = field(default_factory=dict)
"""Sweetspot for each qubit."""
fitted_parameters: dict[QubitId, float] = field(default_factory=dict)
ResFluxType = np.dtype(
[
("freq", np.float64),
("bias", np.float64),
("signal", np.float64),
("phase", np.float64),
]
)
"""Custom dtype for resonator flux dependence."""
@dataclass
class ResonatorFluxData(Data):
"""ResonatorFlux acquisition outputs."""
resonator_type: str
"""Resonator type."""
qubit_frequency: dict[QubitId, float] = field(default_factory=dict)
"""Qubit frequencies."""
bare_resonator_frequency: dict[QubitId, int] = field(default_factory=dict)
"""Qubit bare resonator frequency power provided by the user."""
charging_energy: dict[QubitId, float] = field(default_factory=dict)
"""Qubit charging energy in Hz."""
data: dict[QubitId, npt.NDArray[ResFluxType]] = field(default_factory=dict)
"""Raw data acquired."""
def register_qubit(self, qubit, freq, bias, signal, phase):
"""Store output for single qubit."""
self.data[qubit] = utils.create_data_array(
freq, bias, signal, phase, dtype=ResFluxType
)
def _acquisition(
params: ResonatorFluxParameters,
platform: CalibrationPlatform,
targets: list[QubitId],
) -> ResonatorFluxData:
"""Data acquisition for ResonatorFlux experiment."""
delta_frequency_range = np.arange(
-params.freq_width / 2, params.freq_width / 2, params.freq_step
)
delta_offset_range = np.arange(
-params.bias_width / 2, params.bias_width / 2, params.bias_step
)
# taking advantage of multiplexing, apply the same set of gates to all qubits in parallel
sequence = PulseSequence()
ro_pulses = {}
qubit_frequency = {}
bare_resonator_frequency = {}
charging_energy = {}
matrix_element = {}
offset = {}
freq_sweepers = []
offset_sweepers = []
for q in targets:
ro_sequence = platform.natives.single_qubit[q].MZ()
ro_pulses[q] = ro_sequence[0][1]
sequence += ro_sequence
qubit = platform.qubits[q]
offset0 = platform.config(qubit.flux).offset
freq_sweepers.append(
Sweeper(
parameter=Parameter.frequency,
values=readout_frequency(q, platform) + delta_frequency_range,
channels=[qubit.probe],
)
)
offset_sweepers.append(
Sweeper(
parameter=Parameter.offset,
values=offset0 + delta_offset_range,
channels=[qubit.flux],
)
)
qubit_frequency[q] = platform.config(qubit.drive).frequency
bare_resonator_frequency[q] = platform.calibration.single_qubits[
q
].resonator.bare_frequency
matrix_element[q] = platform.calibration.get_crosstalk_element(q, q)
offset[q] = -offset0 * matrix_element[q]
charging_energy[q] = platform.calibration.single_qubits[q].qubit.charging_energy
data = ResonatorFluxData(
resonator_type=platform.resonator_type,
qubit_frequency=qubit_frequency,
bare_resonator_frequency=bare_resonator_frequency,
charging_energy=charging_energy,
)
results = platform.execute(
[sequence],
[offset_sweepers, freq_sweepers],
nshots=params.nshots,
relaxation_time=params.relaxation_time,
acquisition_type=AcquisitionType.INTEGRATION,
averaging_mode=AveragingMode.CYCLIC,
)
# retrieve the results for every qubit
for i, qubit in enumerate(targets):
result = results[ro_pulses[qubit].id]
data.register_qubit(
qubit,
signal=magnitude(result),
phase=phase(result),
freq=freq_sweepers[i].values,
bias=offset_sweepers[i].values,
)
return data
def _fit(data: ResonatorFluxData) -> ResonatorFluxResults:
"""PostProcessing for resonator_flux protocol.
After applying a mask on the 2D data, the signal is fitted using
the expected frequency vs flux behavior.
The fitting procedure requires the knowledge of the bare resonator frequency,
the charging energy Ec and the maximum qubit frequency which is assumed to be
the frequency at which the qubit is placed.
The protocol aims at extracting the sweetspot, the flux coefficient, the coupling,
the asymmetry and the dressed resonator frequency.
"""
coupling = {}
resonator_freq = {}
asymmetry = {}
fitted_parameters = {}
sweetspot = {}
matrix_element = {}
for qubit in data.qubits:
qubit_data = data[qubit]
biases = qubit_data.bias
frequencies = qubit_data.freq
signal = qubit_data.signal
# extract signal from 2D plot based on SNR mask
frequencies, biases = extract_feature(
frequencies, biases, signal, "min" if data.resonator_type == "2D" else "max"
)
# define fit function
def fit_function(
x: float, g: float, d: float, offset: float, normalization: float
):
"""Fit function for resonator flux dependence."""
return utils.transmon_readout_frequency(
xi=x,
w_max=data.qubit_frequency[qubit] * HZ_TO_GHZ,
xj=0,
d=d,
normalization=normalization,
offset=offset,
crosstalk_element=1,
charging_energy=data.charging_energy[qubit] * HZ_TO_GHZ,
resonator_freq=data.bare_resonator_frequency[qubit] * HZ_TO_GHZ,
g=g,
)
try:
popt, _ = curve_fit(
fit_function,
biases,
frequencies * HZ_TO_GHZ,
bounds=(
[0, 0, -1, 0.5],
[0.5, 1, 1, +1],
),
maxfev=100000,
)
fitted_parameters[qubit] = {
"w_max": data.qubit_frequency[qubit] * HZ_TO_GHZ,
"xj": 0,
"d": popt[1],
"normalization": popt[3],
"offset": popt[2],
"crosstalk_element": 1,
"charging_energy": data.charging_energy[qubit] * HZ_TO_GHZ,
"resonator_freq": data.bare_resonator_frequency[qubit] * HZ_TO_GHZ,
"g": popt[0],
}
matrix_element[qubit] = popt[3]
sweetspot[qubit] = (np.round(popt[2]) - popt[2]) / popt[3]
resonator_freq[qubit] = fit_function(sweetspot[qubit], *popt) * GHZ_TO_HZ
coupling[qubit] = popt[0]
asymmetry[qubit] = popt[1]
except ValueError as e:
log.error(
f"Error in resonator_flux protocol fit: {e} "
"The threshold for the SNR mask is probably too high. "
"Lowering the value of `threshold` in `extract_*_feature`"
"should fix the problem."
)
return ResonatorFluxResults(
frequency=resonator_freq,
coupling=coupling,
matrix_element=matrix_element,
sweetspot=sweetspot,
asymmetry=asymmetry,
fitted_parameters=fitted_parameters,
)
def _plot(data: ResonatorFluxData, fit: ResonatorFluxResults, target: QubitId):
"""Plotting function for ResonatorFlux Experiment."""
figures = utils.flux_dependence_plot(
data, fit, target, utils.transmon_readout_frequency
)
if fit is not None:
fitting_report = table_html(
table_dict(
target,
[
"Coupling g [MHz]",
"Dressed resonator freq [Hz]",
"Asymmetry",
"Sweetspot [V]",
"Flux dependence [V]^-1",
"Chi [MHz]",
],
[
np.round(fit.coupling[target] * 1e3, 2),
np.round(fit.frequency[target], 6),
np.round(fit.asymmetry[target], 3),
np.round(fit.sweetspot[target], 4),
np.round(fit.matrix_element[target], 4),
np.round(
(data.bare_resonator_frequency[target] - fit.frequency[target])
* 1e-6,
2,
),
],
)
)
return figures, fitting_report
return figures, ""
def _update(
results: ResonatorFluxResults, platform: CalibrationPlatform, qubit: QubitId
):
update.dressed_resonator_frequency(results.frequency[qubit], platform, qubit)
update.readout_frequency(results.frequency[qubit], platform, qubit)
update.coupling(results.coupling[qubit], platform, qubit)
update.flux_offset(results.sweetspot[qubit], platform, qubit)
update.sweetspot(results.sweetspot[qubit], platform, qubit)
resonator_flux = Routine(_acquisition, _fit, _plot, _update)
"""ResonatorFlux Routine object."""