qibocal.calibration package#

class qibocal.calibration.CalibrationPlatform(name: str, parameters: ~qibolab._core.parameters.Parameters, instruments: dict[str, qibolab._core.instruments.abstract.Instrument], qubits: dict[typing.Union[int, str], qibolab._core.qubits.Qubit], couplers: dict[typing.Union[int, str], qibolab._core.qubits.Qubit] = <factory>, resonator_type: ~typing.Literal['2D', '3D'] = '2D', is_connected: bool = False, calibration: ~qibocal.calibration.calibration.Calibration = None)[source]#

Bases: Platform

Qibolab platform with calibration information.

calibration: Calibration = None#

Calibration information.

classmethod from_platform(platform: Platform)[source]#
dump(path: Path)[source]#

Dump platform.

property _controller#

Identify controller instrument.

Used for splitting the unrolled sequences to batches.

This method does not support platforms with more than one controller instruments.

_element(qubit: Union[int, str], coupler=False) tuple[Union[int, str], qibolab._core.qubits.Qubit]#
_execute(sequences: list[qibolab._core.sequence.PulseSequence], options: ExecutionParameters, configs: dict[str, qibolab._core.components.configs.Config], sweepers: list[list[qibolab._core.sweeper.Sweeper]]) dict[int, numpy.ndarray[Any, numpy.dtype[numpy.float64]]]#

Execute sequences on the controllers.

property channels: dict[str, qibolab._core.components.channels.Channel]#

Channels in the platform.

property components: set[str]#

Names of all components available in the platform.

config(name: str) Config#

Returns configuration of given component.

connect()#

Connect to all instruments.

coupler(coupler: Union[int, str]) tuple[Union[int, str], qibolab._core.qubits.Qubit]#

Retrieve physical coupler name and object.

Temporary fix for the compiler to work for platforms where the couplers are not named as 0, 1, 2, …

property coupler_channels#

Channel to coupler map.

disconnect()#

Disconnects from instruments.

execute(sequences: list[qibolab._core.sequence.PulseSequence], sweepers: Optional[list[list[qibolab._core.sweeper.Sweeper]]] = None, **options) dict[int, numpy.ndarray[Any, numpy.dtype[numpy.float64]]]#

Execute pulse sequences.

If any sweeper is passed, the execution is performed for the different values of sweeped parameters.

Returns readout results acquired by after execution.

Example

import numpy as np
from qibolab import Parameter, PulseSequence, Sweeper, create_dummy


platform = create_dummy()
qubit = platform.qubits[0]
natives = platform.natives.single_qubit[0]
sequence = natives.MZ.create_sequence()
parameter_range = np.random.randint(10, size=10)
sweeper = [
    Sweeper(
        parameter=Parameter.frequency,
        values=parameter_range,
        channels=[qubit.probe],
    )
]
platform.execute([sequence], [sweeper])
is_connected: bool = False#

Flag for whether we are connected to the physical instruments.

property natives: NativeGates#

Native gates containers.

property nqubits: int#

Total number of usable qubits in the QPU.

property ordered_pairs#

List of qubit pairs that are connected in the QPU.

property pairs: list[tuple[Union[int, str], Union[int, str]]]#

Available pairs in thee platform.

qubit(qubit: Union[int, str]) tuple[Union[int, str], qibolab._core.qubits.Qubit]#

Retrieve physical qubit name and object.

Temporary fix for the compiler to work for platforms where the qubits are not named as 0, 1, 2, …

property qubit_channels: dict[str, Union[int, str]]#

Channel to qubit map.

resonator_type: Literal['2D', '3D'] = '2D'#

Type of resonator (2D or 3D) in the used QPU.

property sampling_rate#

Sampling rate of control electronics in giga samples per second (GSps).

property settings: Settings#

Container with default execution settings.

update(update: dict[str, Any])#

Update platform’s parameters.

name: str#

Name of the platform.

parameters: Parameters#

instruments: InstrumentMap#

Mapping instrument names to qibolab.instruments.abstract.Instrument objects.

qubits: QubitMap#

Qubit controllers.

The mapped objects hold the qubit.components.channels.Channel instances required to send pulses addressing the desired qubits.

couplers: QubitMap#

Coupler controllers.

Fully analogue to qubits. Only the flux channel is expected to be populated in the mapped objects.

qibocal.calibration.create_calibration_platform(name: str) CalibrationPlatform[source]#

Submodules#

qibocal.calibration.calibration module#

qibocal.calibration.calibration.QubitId#

Qubit name.

alias of Union[int, str][Union[int, str]]

qibocal.calibration.calibration.QubitPairId#

Qubit pair name.

alias of Annotated[tuple[Union[int, str][Union[int, str]], Union[int, str][Union[int, str]]]]

qibocal.calibration.calibration.CALIBRATION = 'calibration.json'#

Calibration file.

qibocal.calibration.calibration.Measure#

mean and error.

Type:

Measured is represented as two values

alias of tuple[float, Optional[float]]

class qibocal.calibration.calibration.Model[source]#

Bases: BaseModel

Global model, holding common configurations.

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

_abc_impl = <_abc._abc_data object>#
_calculate_keys(*args: Any, **kwargs: Any) Any#
_check_frozen(name: str, value: Any) None#
_copy_and_set_values(*args: Any, **kwargs: Any) Any#
classmethod _get_value(*args: Any, **kwargs: Any) Any#
_iter(*args: Any, **kwargs: Any) Any#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Self#
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
classmethod from_orm(obj: Any) Self#
json(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}#
classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values – Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Optional[Mapping[str, Any]] = None, deep: bool = False) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep – Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Union[Literal['json', 'python'], str] = 'python', include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
  • mode – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

  • include – A set of fields to include in the output.

  • exclude – A set of fields to exclude from the output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to use the field’s alias in the dictionary key if defined.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) str#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
  • indent – Indentation to use in the JSON output. If None is passed, the output will be compact.

  • include – Field(s) to include in the JSON output.

  • exclude – Field(s) to exclude from the JSON output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to serialize using field aliases.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

model_fields: ClassVar[dict[str, FieldInfo]] = {}#
property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Parameters:
  • by_alias – Whether to use attribute aliases or not.

  • ref_template – The reference template.

  • schema_generator – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode – The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors – Whether to raise errors, defaults to True.

  • _parent_namespace_depth – The depth level of the parent namespace, defaults to 2.

  • _types_namespace – The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None) Self#

Validate a pydantic model instance.

Parameters:
  • obj – The object to validate.

  • strict – Whether to enforce types strictly.

  • from_attributes – Whether to extract data from object attributes.

  • context – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data – The JSON data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None) Self#

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj – The object containing string data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod parse_obj(obj: Any) Self#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str#
classmethod update_forward_refs(**localns: Any) None#
classmethod validate(value: Any) Self#
class qibocal.calibration.calibration.Resonator(*, bare_frequency: Optional[float] = None, dressed_frequency: Optional[float] = None, depletion_time: Optional[int] = None, bare_frequency_amplitude: Optional[float] = None)[source]#

Bases: Model

Representation of resonator parameters.

bare_frequency: Optional[float]#

Bare resonator frequency [Hz].

dressed_frequency: Optional[float]#

Dressed resonator frequency [Hz].

depletion_time: Optional[int]#

Depletion time [ns].

bare_frequency_amplitude: Optional[float]#

Readout amplitude at high frequency.

property dispersive_shift#

Dispersive shift.

_abc_impl = <_abc._abc_data object>#
_calculate_keys(*args: Any, **kwargs: Any) Any#
_check_frozen(name: str, value: Any) None#
_copy_and_set_values(*args: Any, **kwargs: Any) Any#
classmethod _get_value(*args: Any, **kwargs: Any) Any#
_iter(*args: Any, **kwargs: Any) Any#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Self#
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
classmethod from_orm(obj: Any) Self#
json(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}#
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values – Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Optional[Mapping[str, Any]] = None, deep: bool = False) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep – Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Union[Literal['json', 'python'], str] = 'python', include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
  • mode – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

  • include – A set of fields to include in the output.

  • exclude – A set of fields to exclude from the output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to use the field’s alias in the dictionary key if defined.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) str#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
  • indent – Indentation to use in the JSON output. If None is passed, the output will be compact.

  • include – Field(s) to include in the JSON output.

  • exclude – Field(s) to exclude from the JSON output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to serialize using field aliases.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

model_fields: ClassVar[dict[str, FieldInfo]] = {'bare_frequency': FieldInfo(annotation=Union[float, NoneType], required=False, default=None), 'bare_frequency_amplitude': FieldInfo(annotation=Union[float, NoneType], required=False, default=None), 'depletion_time': FieldInfo(annotation=Union[int, NoneType], required=False, default=None), 'dressed_frequency': FieldInfo(annotation=Union[float, NoneType], required=False, default=None)}#
property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Parameters:
  • by_alias – Whether to use attribute aliases or not.

  • ref_template – The reference template.

  • schema_generator – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode – The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors – Whether to raise errors, defaults to True.

  • _parent_namespace_depth – The depth level of the parent namespace, defaults to 2.

  • _types_namespace – The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None) Self#

Validate a pydantic model instance.

Parameters:
  • obj – The object to validate.

  • strict – Whether to enforce types strictly.

  • from_attributes – Whether to extract data from object attributes.

  • context – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data – The JSON data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None) Self#

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj – The object containing string data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod parse_obj(obj: Any) Self#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str#
classmethod update_forward_refs(**localns: Any) None#
classmethod validate(value: Any) Self#
class qibocal.calibration.calibration.Qubit(*, frequency_01: Optional[float] = None, frequency_12: Optional[float] = None, maximum_frequency: Optional[float] = None, asymmetry: Optional[float] = None, sweetspot: Optional[float] = None, flux_coefficients: Optional[list[float]] = None)[source]#

Bases: Model

Representation of Qubit parameters

frequency_01: Optional[float]#

“0->1 transition frequency [Hz].

frequency_12: Optional[float]#

1->2 transition frequency [Hz].

maximum_frequency: Optional[float]#

Maximum transition frequency [Hz].

asymmetry: Optional[float]#

Junctions asymmetry.

sweetspot: Optional[float]#

Qubit sweetspot [V].

flux_coefficients: Optional[list[float]]#

Amplitude - frequency dispersion relation coefficients

property anharmonicity#

Anharmonicity of the qubit [Hz].

property charging_energy#

Charging energy Ec [Hz].

property josephson_energy#

Josephson energy [Hz].

The following formula is the inversion of the maximum frequency obtained from the flux dependence protoco.

_abc_impl = <_abc._abc_data object>#
_calculate_keys(*args: Any, **kwargs: Any) Any#
_check_frozen(name: str, value: Any) None#
_copy_and_set_values(*args: Any, **kwargs: Any) Any#
classmethod _get_value(*args: Any, **kwargs: Any) Any#
_iter(*args: Any, **kwargs: Any) Any#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Self#
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
classmethod from_orm(obj: Any) Self#
json(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}#
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values – Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Optional[Mapping[str, Any]] = None, deep: bool = False) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep – Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Union[Literal['json', 'python'], str] = 'python', include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
  • mode – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

  • include – A set of fields to include in the output.

  • exclude – A set of fields to exclude from the output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to use the field’s alias in the dictionary key if defined.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) str#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
  • indent – Indentation to use in the JSON output. If None is passed, the output will be compact.

  • include – Field(s) to include in the JSON output.

  • exclude – Field(s) to exclude from the JSON output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to serialize using field aliases.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

model_fields: ClassVar[dict[str, FieldInfo]] = {'asymmetry': FieldInfo(annotation=Union[float, NoneType], required=False, default=None), 'flux_coefficients': FieldInfo(annotation=Union[list[float], NoneType], required=False, default=None), 'frequency_01': FieldInfo(annotation=Union[float, NoneType], required=False, default=None), 'frequency_12': FieldInfo(annotation=Union[float, NoneType], required=False, default=None), 'maximum_frequency': FieldInfo(annotation=Union[float, NoneType], required=False, default=None), 'sweetspot': FieldInfo(annotation=Union[float, NoneType], required=False, default=None)}#
property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Parameters:
  • by_alias – Whether to use attribute aliases or not.

  • ref_template – The reference template.

  • schema_generator – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode – The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors – Whether to raise errors, defaults to True.

  • _parent_namespace_depth – The depth level of the parent namespace, defaults to 2.

  • _types_namespace – The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None) Self#

Validate a pydantic model instance.

Parameters:
  • obj – The object to validate.

  • strict – Whether to enforce types strictly.

  • from_attributes – Whether to extract data from object attributes.

  • context – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data – The JSON data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None) Self#

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj – The object containing string data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod parse_obj(obj: Any) Self#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str#
classmethod update_forward_refs(**localns: Any) None#
classmethod validate(value: Any) Self#
class qibocal.calibration.calibration.Readout(*, fidelity: ~typing.Optional[float] = None, coupling: ~typing.Optional[float] = None, effective_temperature: ~typing.Optional[float] = None, ground_state: list[float] = <factory>, excited_state: list[float] = <factory>, qudits_frequency: dict[int, float] = <factory>)[source]#

Bases: Model

Readout parameters.

fidelity: Optional[float]#

Readout fidelity.

coupling: Optional[float]#

Readout coupling [Hz].

effective_temperature: Optional[float]#

Qubit effective temperature.

ground_state: list[float]#

Ground state position in IQ plane.

excited_state: list[float]#

Excited state position in IQ plane.

qudits_frequency: dict[int, float]#

Dictionary mapping state with readout frequency.

property assignment_fidelity#

Assignment fidelity.

_abc_impl = <_abc._abc_data object>#
_calculate_keys(*args: Any, **kwargs: Any) Any#
_check_frozen(name: str, value: Any) None#
_copy_and_set_values(*args: Any, **kwargs: Any) Any#
classmethod _get_value(*args: Any, **kwargs: Any) Any#
_iter(*args: Any, **kwargs: Any) Any#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Self#
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
classmethod from_orm(obj: Any) Self#
json(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}#
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values – Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Optional[Mapping[str, Any]] = None, deep: bool = False) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep – Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Union[Literal['json', 'python'], str] = 'python', include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
  • mode – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

  • include – A set of fields to include in the output.

  • exclude – A set of fields to exclude from the output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to use the field’s alias in the dictionary key if defined.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) str#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
  • indent – Indentation to use in the JSON output. If None is passed, the output will be compact.

  • include – Field(s) to include in the JSON output.

  • exclude – Field(s) to exclude from the JSON output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to serialize using field aliases.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

model_fields: ClassVar[dict[str, FieldInfo]] = {'coupling': FieldInfo(annotation=Union[float, NoneType], required=False, default=None), 'effective_temperature': FieldInfo(annotation=Union[float, NoneType], required=False, default=None), 'excited_state': FieldInfo(annotation=list[float], required=False, default_factory=list), 'fidelity': FieldInfo(annotation=Union[float, NoneType], required=False, default=None), 'ground_state': FieldInfo(annotation=list[float], required=False, default_factory=list), 'qudits_frequency': FieldInfo(annotation=dict[int, float], required=False, default_factory=dict)}#
property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Parameters:
  • by_alias – Whether to use attribute aliases or not.

  • ref_template – The reference template.

  • schema_generator – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode – The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors – Whether to raise errors, defaults to True.

  • _parent_namespace_depth – The depth level of the parent namespace, defaults to 2.

  • _types_namespace – The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None) Self#

Validate a pydantic model instance.

Parameters:
  • obj – The object to validate.

  • strict – Whether to enforce types strictly.

  • from_attributes – Whether to extract data from object attributes.

  • context – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data – The JSON data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None) Self#

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj – The object containing string data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod parse_obj(obj: Any) Self#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str#
classmethod update_forward_refs(**localns: Any) None#
classmethod validate(value: Any) Self#
class qibocal.calibration.calibration.QubitCalibration(*, resonator: ~qibocal.calibration.calibration.Resonator = <factory>, qubit: ~qibocal.calibration.calibration.Qubit = <factory>, readout: ~qibocal.calibration.calibration.Readout = <factory>, t1: ~typing.Optional[tuple[float, typing.Optional[float]]] = None, t2: ~typing.Optional[tuple[float, typing.Optional[float]]] = None, t2_spin_echo: ~typing.Optional[tuple[float, typing.Optional[float]]] = None, rb_fidelity: ~typing.Optional[tuple[float, typing.Optional[float]]] = None)[source]#

Bases: Model

Container for calibration of single qubit.

resonator: Resonator#

Resonator calibration.

_abc_impl = <_abc._abc_data object>#
_calculate_keys(*args: Any, **kwargs: Any) Any#
_check_frozen(name: str, value: Any) None#
_copy_and_set_values(*args: Any, **kwargs: Any) Any#
classmethod _get_value(*args: Any, **kwargs: Any) Any#
_iter(*args: Any, **kwargs: Any) Any#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Self#
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
classmethod from_orm(obj: Any) Self#
json(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}#
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values – Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Optional[Mapping[str, Any]] = None, deep: bool = False) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep – Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Union[Literal['json', 'python'], str] = 'python', include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
  • mode – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

  • include – A set of fields to include in the output.

  • exclude – A set of fields to exclude from the output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to use the field’s alias in the dictionary key if defined.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) str#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
  • indent – Indentation to use in the JSON output. If None is passed, the output will be compact.

  • include – Field(s) to include in the JSON output.

  • exclude – Field(s) to exclude from the JSON output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to serialize using field aliases.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

model_fields: ClassVar[dict[str, FieldInfo]] = {'qubit': FieldInfo(annotation=Qubit, required=False, default_factory=Qubit), 'rb_fidelity': FieldInfo(annotation=Union[tuple[float, Union[float, NoneType]], NoneType], required=False, default=None), 'readout': FieldInfo(annotation=Readout, required=False, default_factory=Readout), 'resonator': FieldInfo(annotation=Resonator, required=False, default_factory=Resonator), 't1': FieldInfo(annotation=Union[tuple[float, Union[float, NoneType]], NoneType], required=False, default=None), 't2': FieldInfo(annotation=Union[tuple[float, Union[float, NoneType]], NoneType], required=False, default=None), 't2_spin_echo': FieldInfo(annotation=Union[tuple[float, Union[float, NoneType]], NoneType], required=False, default=None)}#
property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Parameters:
  • by_alias – Whether to use attribute aliases or not.

  • ref_template – The reference template.

  • schema_generator – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode – The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors – Whether to raise errors, defaults to True.

  • _parent_namespace_depth – The depth level of the parent namespace, defaults to 2.

  • _types_namespace – The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None) Self#

Validate a pydantic model instance.

Parameters:
  • obj – The object to validate.

  • strict – Whether to enforce types strictly.

  • from_attributes – Whether to extract data from object attributes.

  • context – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data – The JSON data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None) Self#

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj – The object containing string data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod parse_obj(obj: Any) Self#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str#
classmethod update_forward_refs(**localns: Any) None#
classmethod validate(value: Any) Self#
qubit: Qubit#

Qubit calibration.

readout: Readout#

Readout information.

t1: Optional[tuple[float, Optional[float]]]#

Relaxation time [ns].

t2: Optional[tuple[float, Optional[float]]]#

T2 of the qubit [ns].

t2_spin_echo: Optional[tuple[float, Optional[float]]]#

T2 hanh echo [ns].

rb_fidelity: Optional[tuple[float, Optional[float]]]#

Standard rb pulse fidelity.

class qibocal.calibration.calibration.TwoQubitCalibration(*, rb_fidelity: Optional[tuple[float, Optional[float]]] = None, cz_fidelity: Optional[tuple[float, Optional[float]]] = None, coupling: Optional[float] = None)[source]#

Bases: Model

Container for calibration of qubit pair.

_abc_impl = <_abc._abc_data object>#
_calculate_keys(*args: Any, **kwargs: Any) Any#
_check_frozen(name: str, value: Any) None#
_copy_and_set_values(*args: Any, **kwargs: Any) Any#
classmethod _get_value(*args: Any, **kwargs: Any) Any#
_iter(*args: Any, **kwargs: Any) Any#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Self#
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
classmethod from_orm(obj: Any) Self#
json(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}#
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values – Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Optional[Mapping[str, Any]] = None, deep: bool = False) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep – Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Union[Literal['json', 'python'], str] = 'python', include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
  • mode – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

  • include – A set of fields to include in the output.

  • exclude – A set of fields to exclude from the output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to use the field’s alias in the dictionary key if defined.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) str#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
  • indent – Indentation to use in the JSON output. If None is passed, the output will be compact.

  • include – Field(s) to include in the JSON output.

  • exclude – Field(s) to exclude from the JSON output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to serialize using field aliases.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

model_fields: ClassVar[dict[str, FieldInfo]] = {'coupling': FieldInfo(annotation=Union[float, NoneType], required=False, default=None), 'cz_fidelity': FieldInfo(annotation=Union[tuple[float, Union[float, NoneType]], NoneType], required=False, default=None), 'rb_fidelity': FieldInfo(annotation=Union[tuple[float, Union[float, NoneType]], NoneType], required=False, default=None)}#
property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Parameters:
  • by_alias – Whether to use attribute aliases or not.

  • ref_template – The reference template.

  • schema_generator – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode – The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors – Whether to raise errors, defaults to True.

  • _parent_namespace_depth – The depth level of the parent namespace, defaults to 2.

  • _types_namespace – The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None) Self#

Validate a pydantic model instance.

Parameters:
  • obj – The object to validate.

  • strict – Whether to enforce types strictly.

  • from_attributes – Whether to extract data from object attributes.

  • context – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data – The JSON data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None) Self#

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj – The object containing string data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod parse_obj(obj: Any) Self#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str#
classmethod update_forward_refs(**localns: Any) None#
classmethod validate(value: Any) Self#
rb_fidelity: Optional[tuple[float, Optional[float]]]#

Two qubit standard rb fidelity.

cz_fidelity: Optional[tuple[float, Optional[float]]]#

CZ interleaved rb fidelity.

coupling: Optional[float]#

Qubit-qubit coupling.

class qibocal.calibration.calibration.Calibration(*, single_qubits: dict[typing.Annotated[typing.Union[int, str], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], qibocal.calibration.calibration.QubitCalibration] = <factory>, two_qubits: dict[typing.Annotated[tuple[typing.Annotated[typing.Union[int, str], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], typing.Annotated[typing.Union[int, str], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]], BeforeValidator(func=<function <lambda> at 0x7f3fd5def920>, json_schema_input_type=PydanticUndefined), PlainSerializer(func=<function <lambda> at 0x7f3fd5defa60>, return_type=PydanticUndefined, when_used='always')], qibocal.calibration.calibration.TwoQubitCalibration] = <factory>, readout_mitigation_matrix: ~typing.Optional[~scipy.sparse._lil.lil_matrix] = None, flux_crosstalk_matrix: ~typing.Optional[~numpy.ndarray[~typing.Any, ~numpy.dtype[~numpy._typing._array_like._ScalarType_co]]] = None)[source]#

Bases: Model

Calibration container.

_abc_impl = <_abc._abc_data object>#
_calculate_keys(*args: Any, **kwargs: Any) Any#
_check_frozen(name: str, value: Any) None#
_copy_and_set_values(*args: Any, **kwargs: Any) Any#
classmethod _get_value(*args: Any, **kwargs: Any) Any#
_iter(*args: Any, **kwargs: Any) Any#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Self#
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
classmethod from_orm(obj: Any) Self#
json(*, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}#
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values – Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Optional[Mapping[str, Any]] = None, deep: bool = False) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep – Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Union[Literal['json', 'python'], str] = 'python', include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
  • mode – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

  • include – A set of fields to include in the output.

  • exclude – A set of fields to exclude from the output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to use the field’s alias in the dictionary key if defined.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, exclude: Optional[Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]]]] = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: Union[bool, Literal['none', 'warn', 'error']] = True, serialize_as_any: bool = False) str#

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
  • indent – Indentation to use in the JSON output. If None is passed, the output will be compact.

  • include – Field(s) to include in the JSON output.

  • exclude – Field(s) to exclude from the JSON output.

  • context – Additional context to pass to the serializer.

  • by_alias – Whether to serialize using field aliases.

  • exclude_unset – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults – Whether to exclude fields that are set to their default value.

  • exclude_none – Whether to exclude fields that have a value of None.

  • round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

model_fields: ClassVar[dict[str, FieldInfo]] = {'flux_crosstalk_matrix': FieldInfo(annotation=Union[Annotated[ndarray[Any, dtype[+_ScalarType_co]], PlainValidator, PlainSerializer], NoneType], required=False, default=None), 'readout_mitigation_matrix': FieldInfo(annotation=Union[Annotated[lil_matrix, PlainValidator, PlainSerializer], NoneType], required=False, default=None), 'single_qubits': FieldInfo(annotation=dict[Annotated[Union[int, str], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], QubitCalibration], required=False, default_factory=dict), 'two_qubits': FieldInfo(annotation=dict[Annotated[tuple[Annotated[Union[int, str], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], Annotated[Union[int, str], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]], BeforeValidator, PlainSerializer], TwoQubitCalibration], required=False, default_factory=dict)}#
property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Parameters:
  • by_alias – Whether to use attribute aliases or not.

  • ref_template – The reference template.

  • schema_generator – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode – The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors – Whether to raise errors, defaults to True.

  • _parent_namespace_depth – The depth level of the parent namespace, defaults to 2.

  • _types_namespace – The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None) Self#

Validate a pydantic model instance.

Parameters:
  • obj – The object to validate.

  • strict – Whether to enforce types strictly.

  • from_attributes – Whether to extract data from object attributes.

  • context – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None) Self#

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data – The JSON data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None) Self#

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj – The object containing string data to validate.

  • strict – Whether to enforce types strictly.

  • context – Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod parse_obj(obj: Any) Self#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self#
classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str#
classmethod update_forward_refs(**localns: Any) None#
classmethod validate(value: Any) Self#
single_qubits: dict[typing.Annotated[typing.Union[int, str], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], qibocal.calibration.calibration.QubitCalibration]#

Dict with single qubit calibration.

two_qubits: dict[typing.Annotated[tuple[typing.Annotated[typing.Union[int, str], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], typing.Annotated[typing.Union[int, str], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]], BeforeValidator(func=<function <lambda> at 0x7f3fd5def920>, json_schema_input_type=PydanticUndefined), PlainSerializer(func=<function <lambda> at 0x7f3fd5defa60>, return_type=PydanticUndefined, when_used='always')], qibocal.calibration.calibration.TwoQubitCalibration]#

Dict with qubit pairs calibration.

readout_mitigation_matrix: Optional[lil_matrix]#

Readout mitigation matrix.

flux_crosstalk_matrix: Optional[ndarray[Any, dtype[_ScalarType_co]]]#

Crosstalk flux matrix.

dump(path: Path)[source]#

Dump calibration model.

property qubits: list#

List of qubits available in the model.

property nqubits: int#

Number of qubits available.

qubit_index(qubit: Union[int, str])[source]#

Return qubit index from platform qubits.

get_crosstalk_element(qubit1: Union[int, str], qubit2: Union[int, str])[source]#
set_crosstalk_element(qubit1: Union[int, str], qubit2: Union[int, str], value: float)[source]#

qibocal.calibration.platform module#

class qibocal.calibration.platform.CalibrationPlatform(name: str, parameters: ~qibolab._core.parameters.Parameters, instruments: dict[str, qibolab._core.instruments.abstract.Instrument], qubits: dict[typing.Union[int, str], qibolab._core.qubits.Qubit], couplers: dict[typing.Union[int, str], qibolab._core.qubits.Qubit] = <factory>, resonator_type: ~typing.Literal['2D', '3D'] = '2D', is_connected: bool = False, calibration: ~qibocal.calibration.calibration.Calibration = None)[source]#

Bases: Platform

Qibolab platform with calibration information.

calibration: Calibration = None#

Calibration information.

classmethod from_platform(platform: Platform)[source]#
dump(path: Path)[source]#

Dump platform.

property _controller#

Identify controller instrument.

Used for splitting the unrolled sequences to batches.

This method does not support platforms with more than one controller instruments.

_element(qubit: Union[int, str], coupler=False) tuple[Union[int, str], qibolab._core.qubits.Qubit]#
_execute(sequences: list[qibolab._core.sequence.PulseSequence], options: ExecutionParameters, configs: dict[str, qibolab._core.components.configs.Config], sweepers: list[list[qibolab._core.sweeper.Sweeper]]) dict[int, numpy.ndarray[Any, numpy.dtype[numpy.float64]]]#

Execute sequences on the controllers.

property channels: dict[str, qibolab._core.components.channels.Channel]#

Channels in the platform.

property components: set[str]#

Names of all components available in the platform.

config(name: str) Config#

Returns configuration of given component.

connect()#

Connect to all instruments.

coupler(coupler: Union[int, str]) tuple[Union[int, str], qibolab._core.qubits.Qubit]#

Retrieve physical coupler name and object.

Temporary fix for the compiler to work for platforms where the couplers are not named as 0, 1, 2, …

property coupler_channels#

Channel to coupler map.

disconnect()#

Disconnects from instruments.

execute(sequences: list[qibolab._core.sequence.PulseSequence], sweepers: Optional[list[list[qibolab._core.sweeper.Sweeper]]] = None, **options) dict[int, numpy.ndarray[Any, numpy.dtype[numpy.float64]]]#

Execute pulse sequences.

If any sweeper is passed, the execution is performed for the different values of sweeped parameters.

Returns readout results acquired by after execution.

Example

import numpy as np
from qibolab import Parameter, PulseSequence, Sweeper, create_dummy


platform = create_dummy()
qubit = platform.qubits[0]
natives = platform.natives.single_qubit[0]
sequence = natives.MZ.create_sequence()
parameter_range = np.random.randint(10, size=10)
sweeper = [
    Sweeper(
        parameter=Parameter.frequency,
        values=parameter_range,
        channels=[qubit.probe],
    )
]
platform.execute([sequence], [sweeper])
is_connected: bool = False#

Flag for whether we are connected to the physical instruments.

property natives: NativeGates#

Native gates containers.

property nqubits: int#

Total number of usable qubits in the QPU.

property ordered_pairs#

List of qubit pairs that are connected in the QPU.

property pairs: list[tuple[Union[int, str], Union[int, str]]]#

Available pairs in thee platform.

qubit(qubit: Union[int, str]) tuple[Union[int, str], qibolab._core.qubits.Qubit]#

Retrieve physical qubit name and object.

Temporary fix for the compiler to work for platforms where the qubits are not named as 0, 1, 2, …

property qubit_channels: dict[str, Union[int, str]]#

Channel to qubit map.

resonator_type: Literal['2D', '3D'] = '2D'#

Type of resonator (2D or 3D) in the used QPU.

property sampling_rate#

Sampling rate of control electronics in giga samples per second (GSps).

property settings: Settings#

Container with default execution settings.

update(update: dict[str, Any])#

Update platform’s parameters.

name: str#

Name of the platform.

parameters: Parameters#

instruments: InstrumentMap#

Mapping instrument names to qibolab.instruments.abstract.Instrument objects.

qubits: QubitMap#

Qubit controllers.

The mapped objects hold the qubit.components.channels.Channel instances required to send pulses addressing the desired qubits.

couplers: QubitMap#

Coupler controllers.

Fully analogue to qubits. Only the flux channel is expected to be populated in the mapped objects.

qibocal.calibration.platform.create_calibration_platform(name: str) CalibrationPlatform[source]#

qibocal.calibration.serialize module#

qibocal.calibration.serialize.sparse_serialize(matrix: lil_matrix) str[source]#

Serialize a lil_matrix to a base64 string.

qibocal.calibration.serialize.sparse_deserialize(data: str) Optional[lil_matrix][source]#

Deserialize a base64 string back into a lil_matrix.

qibocal.calibration.serialize.ndarray_serialize(ar: ndarray[Any, dtype[_ScalarType_co]]) str[source]#

Serialize array to string.

qibocal.calibration.serialize.ndarray_deserialize(x: Union[str, ndarray[Any, dtype[_ScalarType_co]]]) ndarray[Any, dtype[_ScalarType_co]][source]#

Deserialize array.

qibocal.calibration.serialize.NdArray#

Pydantic-compatible array representation.

alias of ndarray[Any, dtype[_ScalarType_co]][ndarray[Any, dtype[_ScalarType_co]]]