References#

In this page we collect the references used to describe the calibration experiments.

[1]

Cora N. Barrett, Amir H. Karamlou, Sarah E. Muschinske, Ilan T. Rosen, Jochen Braumüller, Rabindra Das, David K. Kim, Bethany M. Niedzielski, Meghan Schuldt, Kyle Serniak, Mollie E. Schwartz, Jonilyn L. Yoder, Terry P. Orlando, Simon Gustavsson, Jeffrey A. Grover, and William D. Oliver. Learning-based calibration of flux crosstalk in transmon qubit arrays. Physical Review Applied, August 2023. URL: http://dx.doi.org/10.1103/PhysRevApplied.20.024070, doi:10.1103/physrevapplied.20.024070.

[2]

Matthias Baur. Realizing quantum gates and algorithms with three superconducting qubits. 2012. URL: https://api.semanticscholar.org/CorpusID:59065808.

[3]

Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, S. M. Girvin, and R. J. Schoelkopf. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Physical Review A, jun 2004. URL: https://doi.org/10.1103%2Fphysreva.69.062320, doi:10.1103/physreva.69.062320.

[4]

Zijun Chen. Metrology of quantum control and measurement in superconducting qubits. 2018. URL: https://api.semanticscholar.org/CorpusID:196194358.

[5]

Nikolai I. Chernov and Claire Lesort. Least squares fitting of circles. Journal of Mathematical Imaging and Vision, 23:239–252, 2005. URL: https://api.semanticscholar.org/CorpusID:5329282.

[6]

Joseph Emerson, Robert Alicki, and Karol Życzkowski. Scalable noise estimation with random unitary operators. Journal of Optics B: Quantum and Semiclassical Optics, 7(10):S347–S352, September 2005. URL: http://dx.doi.org/10.1088/1464-4266/7/10/021, doi:10.1088/1464-4266/7/10/021.

[7]

J. M. Gambetta, F. Motzoi, S. T. Merkel, and F. K. Wilhelm. Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Physical Review A, January 2011. URL: http://dx.doi.org/10.1103/PhysRevA.83.012308, doi:10.1103/physreva.83.012308.

[8]

J. Gao. The Physics of Superconducting Microwave Resonators. PhD, California Institute of Technology, 2008. URL: https://doi.org/10.7907/RAT0-VM75, doi:10.7907/RAT0-VM75.

[9]

Yvonne Y. Gao, M. Adriaan Rol, Steven Touzard, and Chen Wang. A practical guide for building superconducting quantum devices. 2021. arXiv:2106.06173.

[10]

Amy Greene. Calibration and Utilization of High-Fidelity Two-Qubit Operations. PhD thesis, Massachusetts Institute of Technology, 2008.

[11]

Xiu Gu, Anton Frisk Kockum, Adam Miranowicz, Yu-xi Liu, and Franco Nori. Microwave photonics with superconducting quantum circuits. Physics Reports, 718-719:1–102, November 2017. doi:10.1016/j.physrep.2017.10.002.

[12]

E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland. Randomized benchmarking of quantum gates. Physical Review A, jan 2008. URL: http://dx.doi.org/10.1103/PhysRevA.77.012307, doi:10.1103/physreva.77.012307.

[13]

Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Charge-insensitive qubit design derived from the cooper pair box. Physical Review A, October 2007. URL: http://dx.doi.org/10.1103/PhysRevA.76.042319, doi:10.1103/physreva.76.042319.

[14]

P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews, June 2019. URL: http://dx.doi.org/10.1063/1.5089550, doi:10.1063/1.5089550.

[15]

F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm. Simple pulses for elimination of leakage in weakly nonlinear qubits. Physical Review Letters, September 2009. URL: http://dx.doi.org/10.1103/PhysRevLett.103.110501, doi:10.1103/physrevlett.103.110501.

[16]

Michael A Nielsen. A simple formula for the average gate fidelity of a quantum dynamical operation. Physics Letters A, 303(4):249–252, October 2002. URL: http://dx.doi.org/10.1016/S0375-9601(02)01272-0, doi:10.1016/s0375-9601(02)01272-0.

[17]

Edoardo Pedicillo, Andrea Pasquale, and Stefano Carrazza. Benchmarking machine learning models for quantum state classification. 2023. arXiv:2309.07679.

[18]

S. Probst, F. B. Song, P. A. Bushev, A. V. Ustinov, and M. Weides. Efficient and robust analysis of complex scattering data under noise in microwave resonators. Review of Scientific Instruments, 86(2):024706, 02 2015. URL: https://doi.org/10.1063/1.4907935, arXiv:https://pubs.aip.org/aip/rsi/article-pdf/doi/10.1063/1.4907935/15732678/024706\_1\_online.pdf, doi:10.1063/1.4907935.

[19]

Matthew Reed. Entanglement and quantum error correction with superconducting qubits. 2013. URL: https://arxiv.org/abs/1311.6759, arXiv:1311.6759.

[20]

M. A. Rol, L. Ciorciaro, F. K. Malinowski, B. M. Tarasinski, R. E. Sagastizabal, C. C. Bultink, Y. Salathe, N. Haandbaek, J. Sedivy, and L. DiCarlo. Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor. Applied Physics Letters, February 2020. URL: http://dx.doi.org/10.1063/1.5133894, doi:10.1063/1.5133894.

[21]

Sarah Sheldon, Lev S. Bishop, Easwar Magesan, Stefan Filipp, Jerry M. Chow, and Jay M. Gambetta. Characterizing errors on qubit operations via iterative randomized benchmarking. Physical Review A, January 2016. URL: http://dx.doi.org/10.1103/PhysRevA.93.012301, doi:10.1103/physreva.93.012301.

[22]

Andreas Wallraff, David I Schuster, Alexandre Blais, Luigi Frunzio, R-S Huang, Johannes Majer, Sameer Kumar, Steven M Girvin, and Robert J Schoelkopf. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431(7005):162–167, 2004. doi:https://doi.org/10.1038/nature02851.