Source code for qibocal.protocols.flux_dependence.qubit_flux_dependence

from dataclasses import dataclass, field
from typing import Optional

import numpy as np
import numpy.typing as npt
from qibolab import (
    AcquisitionType,
    AveragingMode,
    Delay,
    Parameter,
    PulseSequence,
    Sweeper,
)
from scipy.optimize import curve_fit

from qibocal.auto.operation import Data, QubitId, Results, Routine
from qibocal.calibration import CalibrationPlatform
from qibocal.config import log
from qibocal.result import magnitude, phase
from qibocal.update import replace

from ... import update
from ..utils import (
    GHZ_TO_HZ,
    HZ_TO_GHZ,
    extract_feature,
    readout_frequency,
    table_dict,
    table_html,
)
from . import utils
from .resonator_flux_dependence import ResonatorFluxParameters


[docs]@dataclass class QubitFluxParameters(ResonatorFluxParameters): """QubitFlux runcard inputs.""" drive_amplitude: Optional[float] = None """Drive amplitude (optional). If defined, same amplitude will be used in all qubits. Otherwise the default amplitude defined on the platform runcard will be used""" drive_duration: int = 2000 """Duration of the drive pulse."""
[docs]@dataclass class QubitFluxResults(Results): """QubitFlux outputs.""" sweetspot: dict[QubitId, float] = field(default_factory=dict) """Sweetspot for each qubit.""" frequency: dict[QubitId, float] = field(default_factory=dict) """Drive frequency for each qubit.""" fitted_parameters: dict[QubitId, dict[str, float]] = field(default_factory=dict) """Raw fitting output.""" matrix_element: dict[QubitId, float] = field(default_factory=dict) """V_ii coefficient."""
QubitFluxType = np.dtype( [ ("freq", np.float64), ("bias", np.float64), ("signal", np.float64), ("phase", np.float64), ] ) """Custom dtype for resonator flux dependence."""
[docs]@dataclass class QubitFluxData(Data): """QubitFlux acquisition outputs.""" resonator_type: str """Resonator type.""" charging_energy: dict[QubitId, float] = field(default_factory=dict) """Qubit charging energy.""" qubit_frequency: dict[QubitId, float] = field(default_factory=dict) """Qubit charging energy.""" data: dict[QubitId, npt.NDArray[QubitFluxType]] = field(default_factory=dict) """Raw data acquired."""
[docs] def register_qubit(self, qubit, freq, bias, signal, phase): """Store output for single qubit.""" self.data[qubit] = utils.create_data_array( freq, bias, signal, phase, dtype=QubitFluxType )
[docs]def _acquisition( params: QubitFluxParameters, platform: CalibrationPlatform, targets: list[QubitId], ) -> QubitFluxData: """Data acquisition for QubitFlux Experiment.""" delta_frequency_range = np.arange( -params.freq_width / 2, params.freq_width / 2, params.freq_step ) delta_offset_range = np.arange( -params.bias_width / 2, params.bias_width / 2, params.bias_step ) sequence = PulseSequence() ro_pulses = {} qd_pulses = {} qubit_frequency = {} freq_sweepers = [] offset_sweepers = [] for q in targets: natives = platform.natives.single_qubit[q] qd_channel, qd_pulse = natives.RX()[0] ro_channel, ro_pulse = natives.MZ()[0] qd_pulse = replace(qd_pulse, duration=params.drive_duration) if params.drive_amplitude is not None: qd_pulse = replace(qd_pulse, amplitude=params.drive_amplitude) qd_pulses[q] = qd_pulse ro_pulses[q] = ro_pulse qubit_frequency[q] = frequency0 = platform.config(qd_channel).frequency sequence.append((qd_channel, qd_pulse)) sequence.append((ro_channel, Delay(duration=qd_pulse.duration))) sequence.append((ro_channel, ro_pulse)) # define the parameters to sweep and their range: freq_sweepers.append( Sweeper( parameter=Parameter.frequency, values=frequency0 + delta_frequency_range, channels=[qd_channel], ) ) flux_channel = platform.qubits[q].flux offset0 = platform.config(flux_channel).offset offset_sweepers.append( Sweeper( parameter=Parameter.offset, values=offset0 + delta_offset_range, channels=[flux_channel], ) ) data = QubitFluxData( resonator_type=platform.resonator_type, charging_energy={ qubit: platform.calibration.single_qubits[qubit].qubit.charging_energy for qubit in targets }, qubit_frequency=qubit_frequency, ) results = platform.execute( [sequence], [offset_sweepers, freq_sweepers], updates=[ {platform.qubits[q].probe: {"frequency": readout_frequency(q, platform)}} for q in targets ], nshots=params.nshots, relaxation_time=params.relaxation_time, acquisition_type=AcquisitionType.INTEGRATION, averaging_mode=AveragingMode.CYCLIC, ) for i, qubit in enumerate(targets): result = results[ro_pulses[qubit].id] data.register_qubit( qubit, signal=magnitude(result), phase=phase(result), freq=freq_sweepers[i].values, bias=offset_sweepers[i].values, ) return data
[docs]def _fit(data: QubitFluxData) -> QubitFluxResults: """ Post-processing for QubitFlux Experiment. See `arXiv:0703002 <https://arxiv.org/abs/cond-mat/0703002>`_. Fit frequency as a function of current for the flux qubit spectroscopy data. All possible sweetspots :math:`x` are evaluated by the function :math:`x p_1 + p_2 = k`, for integers :math:`k`, where :math:`p_1` and :math:`p_2` are respectively the normalization and the offset, as defined in :mod:`qibocal.protocols.flux_dependence.utils.transmon_frequency`. The code returns the sweetspot that is closest to the bias in the middle of the swept interval. """ qubits = data.qubits frequency = {} sweetspot = {} matrix_element = {} fitted_parameters = {} for qubit in qubits: qubit_data = data[qubit] interval_biases = qubit_data.bias interval_frequencies = qubit_data.freq signal = qubit_data.signal frequencies, biases = extract_feature( interval_frequencies, interval_biases, signal, "max" if data.resonator_type == "2D" else "min", ) def fit_function(x, w_max, normalization, offset): return utils.transmon_frequency( xi=x, w_max=w_max, xj=0, d=0, normalization=normalization, offset=offset, crosstalk_element=1, charging_energy=data.charging_energy[qubit] * HZ_TO_GHZ, ) try: popt = curve_fit( fit_function, biases, frequencies * HZ_TO_GHZ, bounds=utils.qubit_flux_dependence_fit_bounds( data.qubit_frequency[qubit], ), maxfev=100000, )[0] fitted_parameters[qubit] = { "w_max": popt[0], "xj": 0, "d": 0, "normalization": popt[1], "offset": popt[2], "crosstalk_element": 1, "charging_energy": data.charging_energy[qubit] * HZ_TO_GHZ, } frequency[qubit] = popt[0] * GHZ_TO_HZ middle_bias = (np.max(interval_biases) + np.min(interval_biases)) / 2 sweetspot[qubit] = ( np.round(popt[1] * middle_bias + popt[2]) - popt[2] ) / popt[1] matrix_element[qubit] = popt[1] except ValueError as e: log.error( f"Error in qubit_flux protocol fit: {e} " "The threshold for the SNR mask is probably too high. " "Lowering the value of `threshold` in `extract_*_feature`" "should fix the problem." ) return QubitFluxResults( frequency=frequency, sweetspot=sweetspot, matrix_element=matrix_element, fitted_parameters=fitted_parameters, )
[docs]def _plot(data: QubitFluxData, fit: QubitFluxResults, target: QubitId): """Plotting function for QubitFlux Experiment.""" figures = utils.flux_dependence_plot( data, fit, target, fit_function=utils.transmon_frequency, ) if fit is not None: fitting_report = table_html( table_dict( target, [ "Sweetspot [V]", "Qubit Frequency at Sweetspot [Hz]", "Flux dependence [V]^-1", ], [ np.round(fit.sweetspot[target], 4), np.round(fit.frequency[target], 4), np.round(fit.matrix_element[target], 4), ], ) ) return figures, fitting_report return figures, ""
[docs]def _update(results: QubitFluxResults, platform: CalibrationPlatform, qubit: QubitId): update.drive_frequency(results.frequency[qubit], platform, qubit) update.sweetspot(results.sweetspot[qubit], platform, qubit) update.flux_offset(results.sweetspot[qubit], platform, qubit) platform.calibration.single_qubits[qubit].qubit.maximum_frequency = int( results.frequency[qubit] ) update.crosstalk_matrix(results.matrix_element[qubit], platform, qubit, qubit)
qubit_flux = Routine(_acquisition, _fit, _plot, _update) """QubitFlux Routine object."""