Source code for qibocal.protocols.coherence.zeno

from dataclasses import dataclass, field
from typing import Optional

import numpy as np
import plotly.graph_objects as go
from qibolab import AcquisitionType, AveragingMode, ExecutionParameters
from qibolab.platform import Platform
from qibolab.pulses import PulseSequence
from qibolab.qubits import QubitId

from qibocal.auto.operation import Routine

from ..utils import table_dict, table_html
from . import t1, utils
from .zeno_signal import ZenoSignalParameters, ZenoSignalResults, _update


[docs]@dataclass class ZenoParameters(ZenoSignalParameters): """Zeno runcard inputs."""
[docs]@dataclass class ZenoData(t1.T1Data): readout_duration: dict[QubitId, float] = field(default_factory=dict) """Readout durations for each qubit"""
[docs]@dataclass class ZenoResults(ZenoSignalResults): """Zeno outputs.""" chi2: dict[QubitId, tuple[float, Optional[float]]] """Chi squared estimate mean value and error."""
[docs]def _acquisition( params: ZenoParameters, platform: Platform, targets: list[QubitId], ) -> ZenoData: """ In a T1_Zeno experiment, we measure an excited qubit repeatedly. Due to decoherence processes, it is possible that, at the time of measurement, the qubit will not be excited anymore. The quantum zeno effect consists of measuring allowing a particle's time evolution to be slowed down by measuring it frequently enough. However, in the experiments we see that due the QND-ness of the readout pulse that the qubit decoheres faster. Reference: https://link.aps.org/accepted/10.1103/PhysRevLett.118.240401. """ # create sequence of pulses: sequence = PulseSequence() RX_pulses = {} ro_pulses = {} ro_pulse_duration = {} for qubit in targets: RX_pulses[qubit] = platform.create_RX_pulse(qubit, start=0) sequence.add(RX_pulses[qubit]) start = RX_pulses[qubit].finish ro_pulses[qubit] = [] for _ in range(params.readouts): ro_pulse = platform.create_qubit_readout_pulse(qubit, start=start) start += ro_pulse.duration sequence.add(ro_pulse) ro_pulses[qubit].append(ro_pulse) ro_pulse_duration[qubit] = ro_pulse.duration # create a DataUnits object to store the results data = ZenoData(readout_duration=ro_pulse_duration) # execute the first pulse sequence results = platform.execute_pulse_sequence( sequence, ExecutionParameters( nshots=params.nshots, relaxation_time=params.relaxation_time, acquisition_type=AcquisitionType.DISCRIMINATION, averaging_mode=AveragingMode.SINGLESHOT, ), ) # retrieve and store the results for every qubit probs = {qubit: [] for qubit in targets} for qubit in targets: for ro_pulse in ro_pulses[qubit]: probs[qubit].append(results[ro_pulse.serial].probability(state=1)) errors = [np.sqrt(prob * (1 - prob) / params.nshots) for prob in probs[qubit]] data.register_qubit( t1.CoherenceProbType, (qubit), dict( wait=np.arange(1, len(probs[qubit]) + 1), prob=probs[qubit], error=errors, ), ) return data
[docs]def _fit(data: ZenoData) -> ZenoResults: """ Fitting routine for T1 experiment. The used model is .. math:: y = p_0-p_1 e^{-x p_2}. """ t1s, fitted_parameters, pcovs, chi2 = utils.exponential_fit_probability(data) return ZenoResults(t1s, fitted_parameters, pcovs, chi2)
[docs]def _plot(data: ZenoData, fit: ZenoResults, target: QubitId): """Plotting function for T1 experiment.""" figures = [] fitting_report = "" qubit_data = data[target] probs = qubit_data.prob error_bars = qubit_data.error readouts = np.arange(1, len(qubit_data.prob) + 1) fig = go.Figure( [ go.Scatter( x=readouts, y=probs, opacity=1, name="Probability of 1", showlegend=True, legendgroup="Probability of 1", mode="lines", ), go.Scatter( x=np.concatenate((readouts, readouts[::-1])), y=np.concatenate((probs + error_bars, (probs - error_bars)[::-1])), fill="toself", fillcolor=t1.COLORBAND, line=dict(color=t1.COLORBAND_LINE), showlegend=True, name="Errors", ), ] ) if fit is not None: fitting_report = "" waitrange = np.linspace( min(readouts), max(readouts), 2 * len(qubit_data), ) params = fit.fitted_parameters[target] fig.add_trace( go.Scatter( x=waitrange, y=utils.exp_decay(waitrange, *params), name="Fit", line=go.scatter.Line(dash="dot"), ) ) fitting_report = table_html( table_dict( target, ["T1 [ns]", "Readout Pulse [ns]", "chi2 reduced"], [ fit.zeno_t1[target], np.array(fit.zeno_t1[target]) * data.readout_duration[target], fit.chi2[target], ], display_error=True, ) ) # FIXME: Pulse duration (+ time of flight ?) # last part fig.update_layout( showlegend=True, xaxis_title="Number of readouts", yaxis_title="Probability of State 1", ) figures.append(fig) return figures, fitting_report
zeno = Routine(_acquisition, _fit, _plot, _update)