Source code for qibocal.protocols.coherence.zeno

from dataclasses import dataclass, field
from typing import Optional

import numpy as np
import plotly.graph_objects as go
from qibolab import AcquisitionType, AveragingMode, PulseSequence, Readout

from qibocal import update
from qibocal.auto.operation import Parameters, QubitId, Results, Routine
from qibocal.calibration import CalibrationPlatform

from ...result import probability
from ..utils import COLORBAND, COLORBAND_LINE, table_dict, table_html
from . import t1, utils


[docs]@dataclass class ZenoParameters(Parameters): """Zeno runcard inputs.""" readouts: int "Number of readout pulses"
[docs]@dataclass class ZenoResults(Results): """Zeno outputs.""" zeno_t1: dict[QubitId, int] """T1 for each qubit.""" fitted_parameters: dict[QubitId, dict[str, float]] """Raw fitting output.""" pcov: dict[QubitId, list[float]] """Approximate covariance of fitted parameters.""" chi2: dict[QubitId, tuple[float, Optional[float]]] """Chi squared estimate mean value and error."""
[docs]def zeno_sequence( platform: CalibrationPlatform, targets: list[QubitId], readouts: int ) -> tuple[PulseSequence, dict[QubitId, int]]: """Generating sequence for Zeno experiment.""" sequence = PulseSequence() readout_duration = {} for q in targets: natives = platform.natives.single_qubit[q] _, ro_pulse = natives.MZ()[0] readout_duration[q] = ro_pulse.duration qubit_sequence = natives.RX() | natives.MZ() for _ in range(readouts - 1): qubit_sequence += natives.MZ() sequence += qubit_sequence return sequence, readout_duration
[docs]@dataclass class ZenoData(t1.T1Data): readout_duration: dict[QubitId, float] = field(default_factory=dict) """Readout durations for each qubit"""
[docs]def _acquisition( params: ZenoParameters, platform: CalibrationPlatform, targets: list[QubitId], ) -> ZenoData: """ In a T1_Zeno experiment, we measure an excited qubit repeatedly. Due to decoherence processes, it is possible that, at the time of measurement, the qubit will not be excited anymore. The quantum zeno effect consists of measuring allowing a particle's time evolution to be slowed down by measuring it frequently enough. However, in the experiments we see that due the QND-ness of the readout pulse that the qubit decoheres faster. Reference: https://link.aps.org/accepted/10.1103/PhysRevLett.118.240401. """ sequence, readout_duration = zeno_sequence( platform, targets, readouts=params.readouts ) data = ZenoData(readout_duration=readout_duration) results = platform.execute( [sequence], nshots=params.nshots, relaxation_time=params.relaxation_time, acquisition_type=AcquisitionType.DISCRIMINATION, averaging_mode=AveragingMode.SINGLESHOT, ) for qubit in targets: probs = [] readouts = [ pulse for pulse in sequence.channel(platform.qubits[qubit].acquisition) if isinstance(pulse, Readout) ] for i in range(params.readouts): ro_pulse = readouts[i] probs.append(probability(results[ro_pulse.id], state=1)) data.register_qubit( t1.CoherenceProbType, (qubit), dict( wait=np.arange(params.readouts) + 1, prob=np.array(probs), error=np.array( [np.sqrt(prob * (1 - prob) / params.nshots) for prob in probs] ), ), ) return data
[docs]def _fit(data: ZenoData) -> ZenoResults: """ Fitting routine for T1 experiment. The used model is .. math:: y = p_0-p_1 e^{-x p_2}. """ t1s, fitted_parameters, pcovs, chi2 = utils.exponential_fit_probability(data) return ZenoResults(t1s, fitted_parameters, pcovs, chi2)
[docs]def _plot(data: ZenoData, fit: ZenoResults, target: QubitId): """Plotting function for T1 experiment.""" figures = [] fitting_report = "" qubit_data = data[target] probs = qubit_data.prob error_bars = qubit_data.error readouts = qubit_data.wait fig = go.Figure( [ go.Scatter( x=readouts, y=probs, opacity=1, name="Probability of 1", showlegend=True, legendgroup="Probability of 1", mode="lines", ), go.Scatter( x=np.concatenate((readouts, readouts[::-1])), y=np.concatenate((probs + error_bars, (probs - error_bars)[::-1])), fill="toself", fillcolor=COLORBAND, line=dict(color=COLORBAND_LINE), showlegend=True, name="Errors", ), ] ) if fit is not None: fitting_report = "" waitrange = np.linspace( min(readouts), max(readouts), 2 * len(qubit_data), ) params = fit.fitted_parameters[target] fig.add_trace( go.Scatter( x=waitrange, y=utils.exp_decay(waitrange, *params), name="Fit", line=go.scatter.Line(dash="dot"), ) ) fitting_report = table_html( table_dict( target, ["T1 [ns]", "Readout Pulse [ns]", "chi2 reduced"], [ np.array(fit.zeno_t1[target]) * data.readout_duration[target], (data.readout_duration[target], 0), fit.chi2[target], ], display_error=True, ) ) # FIXME: Pulse duration (+ time of flight ?) # last part fig.update_layout( showlegend=True, xaxis_title="Number of readouts", yaxis_title="Probability of State 1", ) figures.append(fig) return figures, fitting_report
[docs]def _update(results: ZenoResults, platform: CalibrationPlatform, qubit: QubitId): update.t1(results.zeno_t1[qubit], platform, qubit)
zeno = Routine(_acquisition, _fit, _plot, _update)