from dataclasses import dataclass
from typing import Union
import numpy as np
import plotly.graph_objects as go
from qibolab import AcquisitionType, AveragingMode, Parameter, Sweeper
from qibocal import update
from qibocal.auto.operation import Parameters, QubitId, Results, Routine
from qibocal.calibration import CalibrationPlatform
from ...result import magnitude, phase
from ..ramsey.utils import ramsey_sequence
from ..utils import readout_frequency, table_dict, table_html
from . import t1_signal, utils
[docs]@dataclass
class T2SignalParameters(Parameters):
"""T2Signal runcard inputs."""
delay_between_pulses_start: int
"""Initial delay between RX(pi/2) pulses in ns."""
delay_between_pulses_end: int
"""Final delay between RX(pi/2) pulses in ns."""
delay_between_pulses_step: int
"""Step delay between RX(pi/2) pulses in ns."""
single_shot: bool = False
"""If ``True`` save single shot signal data."""
[docs]@dataclass
class T2SignalResults(Results):
"""T2Signal outputs."""
t2: dict[QubitId, Union[float, list[float]]]
"""T2 for each qubit [ns]."""
fitted_parameters: dict[QubitId, dict[str, float]]
"""Raw fitting output."""
pcov: dict[QubitId, list[float]]
"""Approximate covariance of fitted parameters."""
[docs]class T2SignalData(t1_signal.T1SignalData):
"""T2Signal acquisition outputs."""
t2: dict[QubitId, float]
"""T2 for each qubit [ns]."""
fitted_parameters: dict[QubitId, dict[str, float]]
"""Raw fitting output."""
[docs]def _acquisition(
params: T2SignalParameters,
platform: CalibrationPlatform,
targets: list[QubitId],
) -> T2SignalData:
"""Data acquisition for T2 experiment.
In this protocol the y axis is the magnitude of signal in the IQ plane.
"""
waits = np.arange(
params.delay_between_pulses_start,
params.delay_between_pulses_end,
params.delay_between_pulses_step,
)
sequence, delays = ramsey_sequence(platform, targets)
data = T2SignalData()
sweeper = Sweeper(
parameter=Parameter.duration,
values=waits,
pulses=delays,
)
results = platform.execute(
[sequence],
[[sweeper]],
updates=[
{platform.qubits[q].probe: {"frequency": readout_frequency(q, platform)}}
for q in targets
],
nshots=params.nshots,
relaxation_time=params.relaxation_time,
acquisition_type=AcquisitionType.INTEGRATION,
averaging_mode=(
AveragingMode.SINGLESHOT if params.single_shot else AveragingMode.CYCLIC
),
)
for q in targets:
ro_pulse = list(sequence.channel(platform.qubits[q].acquisition))[-1]
result = results[ro_pulse.id]
signal = magnitude(result)
if params.single_shot:
_waits = np.array(len(signal) * [waits])
else:
_waits = waits
data.register_qubit(
utils.CoherenceType,
(q),
dict(wait=_waits, signal=signal, phase=phase(result)),
)
return data
[docs]def _fit(data: T2SignalData) -> T2SignalResults:
"""The used model is
.. math::
y = p_0 - p_1 e^{-x p_2}.
"""
data = data.average
t2s, fitted_parameters, pcovs = utils.exponential_fit(data)
return T2SignalResults(t2s, fitted_parameters, pcovs)
[docs]def _plot(data: T2SignalData, target: QubitId, fit: T2SignalResults = None):
"""Plotting function for Ramsey Experiment."""
data = data.average
figures = []
fig = go.Figure()
fitting_report = None
qubit_data = data[target]
fig.add_trace(
go.Scatter(
x=qubit_data.wait,
y=qubit_data.signal,
opacity=1,
name="Signal",
showlegend=True,
legendgroup="Signal",
)
)
if fit is not None:
# add fitting trace
waitrange = np.linspace(
min(qubit_data.wait),
max(qubit_data.wait),
2 * len(qubit_data),
)
params = fit.fitted_parameters[target]
fig.add_trace(
go.Scatter(
x=waitrange,
y=utils.exp_decay(
waitrange,
*params,
),
name="Fit",
line=go.scatter.Line(dash="dot"),
)
)
fitting_report = table_html(
table_dict(
target, ["T2 [ns]"], [np.round(fit.t2[target])], display_error=True
)
)
fig.update_layout(
showlegend=True,
xaxis_title="Time [ns]",
yaxis_title="Signal [a.u.]",
)
figures.append(fig)
return figures, fitting_report
[docs]def _update(results: T2SignalResults, platform: CalibrationPlatform, target: QubitId):
update.t2(results.t2[target], platform, target)
t2_signal = Routine(_acquisition, _fit, _plot, _update)
"""T2Signal Routine object."""