from dataclasses import dataclass, field
from typing import Optional
import numpy as np
from qibolab import AcquisitionType, AveragingMode, Parameter, Sweeper
from qibocal.auto.operation import QubitId, Routine
from qibocal.calibration import CalibrationPlatform
from ...result import probability
from ..ramsey.utils import ramsey_sequence
from . import t1, t2_signal, utils
[docs]@dataclass
class T2Parameters(t2_signal.T2SignalParameters):
"""T2 runcard inputs."""
delay_between_pulses_start: int
"""Initial delay between RX(pi/2) pulses in ns."""
delay_between_pulses_end: int
"""Final delay between RX(pi/2) pulses in ns."""
delay_between_pulses_step: int
"""Step delay between RX(pi/2) pulses in ns."""
[docs]@dataclass
class T2Results(t2_signal.T2SignalResults):
"""T2 outputs."""
chi2: Optional[dict[QubitId, tuple[float, Optional[float]]]] = field(
default_factory=dict
)
"""Chi squared estimate mean value and error."""
[docs]class T2Data(t1.T1Data):
"""T2 acquisition outputs."""
[docs]def _acquisition(
params: T2Parameters,
platform: CalibrationPlatform,
targets: list[QubitId],
) -> T2Data:
"""Data acquisition for T2 experiment."""
waits = np.arange(
params.delay_between_pulses_start,
params.delay_between_pulses_end,
params.delay_between_pulses_step,
)
sequence, delays = ramsey_sequence(platform, targets)
data = T2Data()
sweeper = Sweeper(
parameter=Parameter.duration,
values=waits,
pulses=delays,
)
results = platform.execute(
[sequence],
[[sweeper]],
nshots=params.nshots,
relaxation_time=params.relaxation_time,
acquisition_type=AcquisitionType.DISCRIMINATION,
averaging_mode=AveragingMode.SINGLESHOT,
)
for qubit in targets:
ro_pulse = list(sequence.channel(platform.qubits[qubit].acquisition))[-1]
probs = probability(results[ro_pulse.id], state=1)
errors = np.sqrt(probs * (1 - probs) / params.nshots)
data.register_qubit(
t1.CoherenceProbType, (qubit), dict(wait=waits, prob=probs, error=errors)
)
return data
[docs]def _fit(data: T2Data) -> T2Results:
"""The used model is
.. math::
y = p_0 - p_1 e^{-x p_2}.
"""
t2s, fitted_parameters, pcovs, chi2 = utils.exponential_fit_probability(data)
return T2Results(t2s, fitted_parameters, pcovs, chi2)
t2 = Routine(_acquisition, _fit, utils.plot, t2_signal._update)
"""T2 Routine object."""