Source code for qibo.result

import collections
import warnings
from typing import Optional, Union

import numpy as np

from qibo import __version__, backends, gates
from qibo.config import raise_error
from qibo.measurements import apply_bitflips, frequencies_to_binary


def load_result(filename: str):
    """Loads the results of a circuit execution saved to disk.

    Args:
        filename (str): Path to the file containing the results.

    Returns:
        :class:`qibo.result.QuantumState` or :class:`qibo.result.MeasurementOutcomes` or :class:`qibo.result.CircuitResult`: result of circuit execution saved to disk, depending on saved filed.
    """
    payload = np.load(filename, allow_pickle=True).item()
    return globals()[payload.pop("dtype")].from_dict(payload)


[docs]class QuantumState: """Data structure to represent the final state after circuit execution. Args: state (np.ndarray): Input quantum state as np.ndarray. backend (qibo.backends.AbstractBackend): Backend used for the calculations. If not provided the :class:`qibo.backends.GlobalBackend` is going to be used. """ def __init__(self, state, backend=None): from qibo.backends import _check_backend self.backend = _check_backend(backend) self.density_matrix = len(state.shape) == 2 self.nqubits = int(np.log2(state.shape[0])) self._state = state
[docs] def symbolic(self, decimals: int = 5, cutoff: float = 1e-10, max_terms: int = 20): """Dirac notation representation of the state in the computational basis. Args: decimals (int, optional): Number of decimals for the amplitudes. Defaults to :math:`5`. cutoff (float, optional): Amplitudes with absolute value smaller than the cutoff are ignored from the representation. Defaults to ``1e-10``. max_terms (int, optional): Maximum number of terms to print. If the state contains more terms they will be ignored. Defaults to :math:`20`. Returns: (str): A string representing the state in the computational basis. """ if self.density_matrix: terms = self.backend.calculate_symbolic_density_matrix( self._state, self.nqubits, decimals, cutoff, max_terms ) else: terms = self.backend.calculate_symbolic( self._state, self.nqubits, decimals, cutoff, max_terms ) return " + ".join(terms)
[docs] def state(self, numpy: bool = False): """State's tensor representation as a backend tensor. Args: numpy (bool, optional): If ``True`` the returned tensor will be a ``numpy`` array, otherwise it will follow the backend tensor type. Defaults to ``False``. Returns: The state in the computational basis. """ if numpy: return np.array(self._state.tolist()) return self._state
[docs] def probabilities(self, qubits: Optional[Union[list, set]] = None): """Calculates measurement probabilities by tracing out qubits. When noisy model is applied to a circuit and `circuit.density_matrix=False`, this method returns the average probability resulting from repeated execution. This probability distribution approximates the exact probability distribution obtained when `circuit.density_matrix=True`. Args: qubits (list or set, optional): Set of qubits that are measured. If ``None``, ``qubits`` equates the total number of qubits. Defauts to ``None``. Returns: (np.ndarray): Probabilities over the input qubits. """ if qubits is None: qubits = tuple(range(self.nqubits)) if self.density_matrix: return self.backend.calculate_probabilities_density_matrix( self._state, qubits, self.nqubits ) return self.backend.calculate_probabilities(self._state, qubits, self.nqubits)
def __str__(self): return self.symbolic()
[docs] def to_dict(self): """Returns a dictonary containinig all the information needed to rebuild the ``QuantumState``""" return { "state": self.state(numpy=True), "dtype": self.__class__.__name__, "qibo": __version__, }
[docs] def dump(self, filename: str): """Writes to file the ``QuantumState`` for future reloading. Args: filename (str): Path to the file to write to. """ with open(filename, "wb") as f: np.save(f, self.to_dict())
[docs] @classmethod def from_dict(cls, payload: dict): """Builds a ``QuantumState`` object starting from a dictionary. Args: payload (dict): Dictionary containing all the information to load the ``QuantumState`` object. Returns: :class:`qibo.result.QuantumState`: Quantum state object.. """ backend = backends.construct_backend("numpy") return cls(payload.get("state"), backend=backend)
[docs] @classmethod def load(cls, filename: str): """Builds the ``QuantumState`` object stored in a file. Args: filename (str): Path to the file containing the ``QuantumState``. Returns: :class:`qibo.result.QuantumState`: Quantum state object. """ payload = np.load(filename, allow_pickle=True).item() return cls.from_dict(payload)
[docs]class MeasurementOutcomes: """Object to store the outcomes of measurements after circuit execution. Args: measurements (:class:`qibo.gates.M`): Measurement gates. backend (:class:`qibo.backends.AbstractBackend`): Backend used for the calculations. If ``None``, then :class:`qibo.backends.GlobalBackend` is used. Defaults to ``None``. probabilities (np.ndarray): Use these probabilities to generate samples and frequencies. samples (np.darray): Use these samples to generate probabilities and frequencies. nshots (int): Number of shots used for samples, probabilities and frequencies generation. """ def __init__( self, measurements, backend=None, probabilities=None, samples: Optional[int] = None, nshots: int = 1000, ): self.backend = backend self.measurements = measurements self.nshots = nshots self._measurement_gate = None self._probs = probabilities self._samples = samples self._frequencies = None self._repeated_execution_frequencies = None if samples is not None: for m in measurements: indices = [self.measurement_gate.qubits.index(q) for q in m.qubits] m.result.register_samples(samples[:, indices])
[docs] def frequencies(self, binary: bool = True, registers: bool = False): """Returns the frequencies of measured samples. Args: binary (bool, optional): If ``True``, returns frequency keys in binary form. If ``False``, returns them in decimal form. Defaults to ``True``. registers (bool, optional): Group frequencies according to registers. Defaults to ``False``. Returns: A :class:`collections.Counter` where the keys are the observed values and the values the corresponding frequencies, that is the number of times each measured value/bitstring appears. If ``binary`` is ``True`` the keys of the :class:`collections.Counter` are in binary form, as strings of :math:`0` and :math`1`. If ``binary`` is ``False`` the keys of the :class:`collections.Counter` are integers. If ``registers`` is ``True`` a `dict` of :class:`collections.Counter` is returned where keys are the name of each register. If ``registers`` is ``False`` a single :class:`collections.Counter` is returned which contains samples from all the measured qubits, independently of their registers. """ qubits = self.measurement_gate.qubits if self._repeated_execution_frequencies is not None: if binary: return self._repeated_execution_frequencies return collections.Counter( {int(k, 2): v for k, v in self._repeated_execution_frequencies.items()} ) if self._frequencies is None: if self.measurement_gate.has_bitflip_noise() and not self.has_samples(): self._samples = self.samples() if not self.has_samples(): # generate new frequencies self._frequencies = self.backend.sample_frequencies( self._probs, self.nshots ) # register frequencies to individual gate ``MeasurementResult`` qubit_map = {q: i for i, q in enumerate(qubits)} reg_frequencies = {} binary_frequencies = frequencies_to_binary( self._frequencies, len(qubits) ) for gate in self.measurements: rfreqs = collections.Counter() for bitstring, freq in binary_frequencies.items(): idx = 0 rqubits = gate.target_qubits for i, q in enumerate(rqubits): if int(bitstring[qubit_map.get(q)]): idx += 2 ** (len(rqubits) - i - 1) rfreqs[idx] += freq gate.result.register_frequencies(rfreqs) else: self._frequencies = self.backend.calculate_frequencies( self.samples(binary=False) ) if registers: return { gate.register_name: gate.result.frequencies(binary) for gate in self.measurements } if binary: return frequencies_to_binary(self._frequencies, len(qubits)) return self._frequencies
[docs] def probabilities(self, qubits: Optional[Union[list, set]] = None): """Calculate the probabilities as frequencies / nshots Returns: The array containing the probabilities of the measured qubits. """ nqubits = len(self.measurement_gate.qubits) if qubits is None: qubits = range(nqubits) else: if not set(qubits).issubset(self.measurement_gate.qubits): raise_error( RuntimeError, f"Asking probabilities for qubits {qubits}, but only qubits {self.measurement_gate.qubits} were measured.", ) qubits = [self.measurement_gate.qubits.index(q) for q in qubits] if self._probs is not None and not self.measurement_gate.has_bitflip_noise(): return self.backend.calculate_probabilities( np.sqrt(self._probs), qubits, nqubits ) probs = [0 for _ in range(2**nqubits)] for state, freq in self.frequencies(binary=False).items(): probs[state] = freq / self.nshots probs = self.backend.cast(probs) self._probs = probs return self.backend.calculate_probabilities( self.backend.np.sqrt(probs), qubits, nqubits )
[docs] def has_samples(self): """Check whether the samples are available already. Returns: (bool): ``True`` if the samples are available, ``False`` otherwise. """ return self.measurements[0].result.has_samples() or self._samples is not None
[docs] def samples(self, binary: bool = True, registers: bool = False): """Returns raw measurement samples. Args: binary (bool, optional): Return samples in binary or decimal form. registers (bool, optional): Group samples according to registers. Returns: If ``binary`` is ``True`` samples are returned in binary form as a tensor of shape ``(nshots, n_measured_qubits)``. If ``binary`` is ``False`` samples are returned in decimal form as a tensor of shape ``(nshots,)``. If ``registers`` is ``True`` samples are returned in a ``dict`` where the keys are the register names and the values are the samples tensors for each register. If ``registers`` is ``False`` a single tensor is returned which contains samples from all the measured qubits, independently of their registers. """ qubits = self.measurement_gate.target_qubits if self._samples is None: if self.measurements[0].result.has_samples(): self._samples = self.backend.np.concatenate( [gate.result.samples() for gate in self.measurements], axis=1, ) else: if self._frequencies is not None: # generate samples that respect the existing frequencies frequencies = self.frequencies(binary=False) samples = np.concatenate( [np.repeat(x, f) for x, f in frequencies.items()] ) np.random.shuffle(samples) else: # generate new samples samples = self.backend.sample_shots(self._probs, self.nshots) samples = self.backend.samples_to_binary(samples, len(qubits)) if self.measurement_gate.has_bitflip_noise(): p0, p1 = self.measurement_gate.bitflip_map bitflip_probabilities = [ [p0.get(q) for q in qubits], [p1.get(q) for q in qubits], ] samples = self.backend.apply_bitflips( samples, bitflip_probabilities ) # register samples to individual gate ``MeasurementResult`` qubit_map = { q: i for i, q in enumerate(self.measurement_gate.target_qubits) } self._samples = samples for gate in self.measurements: rqubits = tuple(qubit_map.get(q) for q in gate.target_qubits) gate.result.register_samples(self._samples[:, rqubits]) if registers: return { gate.register_name: gate.result.samples(binary) for gate in self.measurements } if binary: return self._samples return self.backend.samples_to_decimal(self._samples, len(qubits))
@property def measurement_gate(self): """Single measurement gate containing all measured qubits. Useful for sampling all measured qubits at once when simulating. """ if self._measurement_gate is None: for gate in self.measurements: if self._measurement_gate is None: self._measurement_gate = gates.M( *gate.init_args, **gate.init_kwargs ) else: self._measurement_gate.add(gate) return self._measurement_gate
[docs] def apply_bitflips(self, p0: float, p1: Optional[float] = None): """Apply bitflips to the measurements with probabilities `p0` and `p1` Args: p0 (float): Probability of the 0->1 flip. p1 (float): Probability of the 1->0 flip. """ return apply_bitflips(self, p0, p1)
[docs] def expectation_from_samples(self, observable): """Computes the real expectation value of a diagonal observable from frequencies. Args: observable (Hamiltonian/SymbolicHamiltonian): diagonal observable in the computational basis. Returns: (float): expectation value from samples. """ freq = self.frequencies(binary=True) qubit_map = self.measurement_gate.qubits return observable.expectation_from_samples(freq, qubit_map)
[docs] def to_dict(self): """Returns a dictonary containinig all the information needed to rebuild the :class:`qibo.result.MeasurementOutcomes`.""" args = { "measurements": [m.to_json() for m in self.measurements], "probabilities": self._probs, "samples": self._samples, "nshots": self.nshots, "dtype": self.__class__.__name__, "qibo": __version__, } return args
[docs] def dump(self, filename: str): """Writes to file the :class:`qibo.result.MeasurementOutcomes` for future reloading. Args: filename (str): Path to the file to write to. """ with open(filename, "wb") as f: np.save(f, self.to_dict())
[docs] @classmethod def from_dict(cls, payload: dict): """Builds a :class:`qibo.result.MeasurementOutcomes` object starting from a dictionary. Args: payload (dict): Dictionary containing all the information to load the :class:`qibo.result.MeasurementOutcomes` object. Returns: A :class:`qibo.result.MeasurementOutcomes` object. """ from qibo.backends import construct_backend if payload["probabilities"] is not None and payload["samples"] is not None: warnings.warn( "Both `probabilities` and `samples` found, discarding the `probabilities` and building out of the `samples`." ) payload.pop("probabilities") backend = construct_backend("numpy") measurements = [gates.M.load(m) for m in payload.get("measurements")] return cls( measurements, backend=backend, probabilities=payload.get("probabilities"), samples=payload.get("samples"), nshots=payload.get("nshots"), )
[docs] @classmethod def load(cls, filename: str): """Builds the :class:`qibo.result.MeasurementOutcomes` object stored in a file. Args: filename (str): Path to the file containing the :class:`qibo.result.MeasurementOutcomes`. Returns: A :class:`qibo.result.MeasurementOutcomes` object. """ payload = np.load(filename, allow_pickle=True).item() return cls.from_dict(payload)
[docs]class CircuitResult(QuantumState, MeasurementOutcomes): """Object to store both the outcomes of measurements and the final state after circuit execution. Args: final_state (np.ndarray): Input quantum state as np.ndarray. measurements (qibo.gates.M): The measurement gates containing the measurements. backend (qibo.backends.AbstractBackend): Backend used for the calculations. If not provided the :class:`qibo.backends.GlobalBackend` is going to be used. probabilities (np.ndarray): Use these probabilities to generate samples and frequencies. samples (np.darray): Use these samples to generate probabilities and frequencies. nshots (int): Number of shots used for samples, probabilities and frequencies generation. """ def __init__( self, final_state, measurements, backend=None, samples=None, nshots=1000 ): QuantumState.__init__(self, final_state, backend) qubits = [q for m in measurements for q in m.target_qubits] if len(qubits) == 0: raise ValueError( "Circuit does not contain measurements. Use a `QuantumState` instead." ) probs = QuantumState.probabilities(self, qubits) if samples is None else None MeasurementOutcomes.__init__( self, measurements, backend=backend, probabilities=probs, samples=samples, nshots=nshots, )
[docs] def probabilities(self, qubits: Optional[Union[list, set]] = None): if self.measurement_gate.has_bitflip_noise(): return MeasurementOutcomes.probabilities(self, qubits) return QuantumState.probabilities(self, qubits)
[docs] def to_dict(self): """Returns a dictonary containinig all the information needed to rebuild the ``CircuitResult``.""" args = MeasurementOutcomes.to_dict(self) args.update(QuantumState.to_dict(self)) args.update({"dtype": self.__class__.__name__}) return args
[docs] @classmethod def from_dict(cls, payload: dict): """Builds a ``CircuitResult`` object starting from a dictionary. Args: payload (dict): Dictionary containing all the information to load the ``CircuitResult`` object. Returns: :class:`qibo.result.CircuitResult`: circuit result object. """ state_load = {"state": payload.pop("state")} state = QuantumState.from_dict(state_load) measurements = MeasurementOutcomes.from_dict(payload) return cls( state.state(), measurements.measurements, backend=state.backend, samples=measurements.samples(), nshots=measurements.nshots, )