Source code for qibo.hamiltonians.models

from functools import reduce

from qibo.backends import matrices
from qibo.config import raise_error
from qibo.hamiltonians.hamiltonians import Hamiltonian, SymbolicHamiltonian
from qibo.hamiltonians.terms import HamiltonianTerm


def _multikron(matrix_list):
    """Calculates Kronecker product of a list of matrices.

    Args:
        matrix_list (list): List of matrices as ``ndarray``.

    Returns:
        ndarray: Kronecker product of all matrices in ``matrix_list``.
    """
    import numpy as np

    return reduce(np.kron, matrix_list)


def _build_spin_model(nqubits, matrix, condition):
    """Helper method for building nearest-neighbor spin model Hamiltonians."""
    h = sum(
        _multikron(matrix if condition(i, j) else matrices.I for j in range(nqubits))
        for i in range(nqubits)
    )
    return h


[docs]def XXZ(nqubits, delta=0.5, dense: bool = True, backend=None): """Heisenberg :math:`\\mathrm{XXZ}` model with periodic boundary conditions. .. math:: H = \\sum _{k=0}^N \\, \\left( X_{k} \\, X_{k + 1} + Y_{k} \\, Y_{k + 1} + \\delta Z_{k} \\, Z_{k + 1} \\right) \\, . Args: nqubits (int): number of qubits. delta (float, optional): coefficient for the :math:`Z` component. Defaults to :math:`0.5`. dense (bool, optional): If ``True``, creates the Hamiltonian as a :class:`qibo.core.hamiltonians.Hamiltonian`, otherwise it creates a :class:`qibo.core.hamiltonians.SymbolicHamiltonian`. Defaults to ``True``. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used in the execution. If ``None``, it uses :class:`qibo.backends.GlobalBackend`. Defaults to ``None``. Example: .. testcode:: from qibo.hamiltonians import XXZ h = XXZ(3) # initialized XXZ model with 3 qubits """ if nqubits < 2: raise_error(ValueError, "Number of qubits must be larger than one.") if dense: condition = lambda i, j: i in {j % nqubits, (j + 1) % nqubits} hx = _build_spin_model(nqubits, matrices.X, condition) hy = _build_spin_model(nqubits, matrices.Y, condition) hz = _build_spin_model(nqubits, matrices.Z, condition) matrix = hx + hy + delta * hz return Hamiltonian(nqubits, matrix, backend=backend) hx = _multikron([matrices.X, matrices.X]) hy = _multikron([matrices.Y, matrices.Y]) hz = _multikron([matrices.Z, matrices.Z]) matrix = hx + hy + delta * hz terms = [HamiltonianTerm(matrix, i, i + 1) for i in range(nqubits - 1)] terms.append(HamiltonianTerm(matrix, nqubits - 1, 0)) ham = SymbolicHamiltonian(backend=backend) ham.terms = terms return ham
def _OneBodyPauli(nqubits, matrix, dense: bool = True, backend=None): """Helper method for constracting non-interacting :math:`X`, :math:`Y`, and :math:`Z` Hamiltonians.""" if dense: condition = lambda i, j: i == j % nqubits ham = -_build_spin_model(nqubits, matrix, condition) return Hamiltonian(nqubits, ham, backend=backend) matrix = -matrix terms = [HamiltonianTerm(matrix, i) for i in range(nqubits)] ham = SymbolicHamiltonian(backend=backend) ham.terms = terms return ham
[docs]def X(nqubits, dense: bool = True, backend=None): """Non-interacting Pauli-:math:`X` Hamiltonian. .. math:: H = - \\sum _{k=0}^N \\, X_{k} \\, . Args: nqubits (int): number of qubits. dense (bool, optional): If ``True`` it creates the Hamiltonian as a :class:`qibo.core.hamiltonians.Hamiltonian`, otherwise it creates a :class:`qibo.core.hamiltonians.SymbolicHamiltonian`. Defaults to ``True``. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used in the execution. If ``None``, it uses :class:`qibo.backends.GlobalBackend`. Defaults to ``None``. """ return _OneBodyPauli(nqubits, matrices.X, dense, backend=backend)
[docs]def Y(nqubits, dense: bool = True, backend=None): """Non-interacting Pauli-:math:`Y` Hamiltonian. .. math:: H = - \\sum _{k=0}^{N} \\, Y_{k} \\, . Args: nqubits (int): number of qubits. dense (bool): If ``True`` it creates the Hamiltonian as a :class:`qibo.core.hamiltonians.Hamiltonian`, otherwise it creates a :class:`qibo.core.hamiltonians.SymbolicHamiltonian`. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used in the execution. If ``None``, it uses :class:`qibo.backends.GlobalBackend`. Defaults to ``None``. """ return _OneBodyPauli(nqubits, matrices.Y, dense, backend=backend)
[docs]def Z(nqubits, dense: bool = True, backend=None): """Non-interacting Pauli-:math:`Z` Hamiltonian. .. math:: H = - \\sum _{k=0}^{N} \\, Z_{k} \\, . Args: nqubits (int): number of qubits. dense (bool): If ``True`` it creates the Hamiltonian as a :class:`qibo.core.hamiltonians.Hamiltonian`, otherwise it creates a :class:`qibo.core.hamiltonians.SymbolicHamiltonian`. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used in the execution. If ``None``, it uses :class:`qibo.backends.GlobalBackend`. Defaults to ``None``. """ return _OneBodyPauli(nqubits, matrices.Z, dense, backend=backend)
[docs]def TFIM(nqubits, h: float = 0.0, dense: bool = True, backend=None): """Transverse field Ising model with periodic boundary conditions. .. math:: H = - \\sum _{k=0}^{N} \\, \\left(Z_{k} \\, Z_{k + 1} + h \\, X_{k}\\right) \\, . Args: nqubits (int): number of qubits. h (float, optional): value of the transverse field. Defaults to :math:`0.0`. dense (bool, optional): If ``True`` it creates the Hamiltonian as a :class:`qibo.core.hamiltonians.Hamiltonian`, otherwise it creates a :class:`qibo.core.hamiltonians.SymbolicHamiltonian`. Defaults to ``True``. """ if nqubits < 2: raise_error(ValueError, "Number of qubits must be larger than one.") if dense: condition = lambda i, j: i in {j % nqubits, (j + 1) % nqubits} ham = -_build_spin_model(nqubits, matrices.Z, condition) if h != 0: condition = lambda i, j: i == j % nqubits ham -= h * _build_spin_model(nqubits, matrices.X, condition) return Hamiltonian(nqubits, ham, backend=backend) matrix = -( _multikron([matrices.Z, matrices.Z]) + h * _multikron([matrices.X, matrices.I]) ) terms = [HamiltonianTerm(matrix, i, i + 1) for i in range(nqubits - 1)] terms.append(HamiltonianTerm(matrix, nqubits - 1, 0)) ham = SymbolicHamiltonian(backend=backend) ham.terms = terms return ham
[docs]def MaxCut(nqubits, dense: bool = True, backend=None): """Max Cut Hamiltonian. .. math:: H = -\\frac{1}{2} \\, \\sum _{j, k = 0}^{N} \\, \\left(1 - Z_{j} \\, Z_{k}\\right) \\, . Args: nqubits (int): number of qubits. dense (bool): If ``True`` it creates the Hamiltonian as a :class:`qibo.core.hamiltonians.Hamiltonian`, otherwise it creates a :class:`qibo.core.hamiltonians.SymbolicHamiltonian`. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used in the execution. If ``None``, it uses :class:`qibo.backends.GlobalBackend`. Defaults to ``None``. """ import sympy as sp from numpy import ones Z = sp.symbols(f"Z:{nqubits}") V = sp.symbols(f"V:{nqubits**2}") sham = -sum( V[i * nqubits + j] * (1 - Z[i] * Z[j]) for i in range(nqubits) for j in range(nqubits) ) sham /= 2 v = ones(nqubits**2) smap = {s: (i, matrices.Z) for i, s in enumerate(Z)} smap.update({s: (i, v[i]) for i, s in enumerate(V)}) ham = SymbolicHamiltonian(sham, symbol_map=smap, backend=backend) if dense: return ham.dense return ham