Source code for qibo.gates.gates

import math
from typing import List, Tuple, Union

import numpy as np

from qibo.config import PRECISION_TOL, raise_error
from qibo.gates.abstract import Gate, ParametrizedGate
from qibo.parameter import Parameter


[docs]class H(Gate): """The Hadamard gate. Corresponds to the following unitary matrix .. math:: \\frac{1}{\\sqrt{2}} \\, \\begin{pmatrix} 1 & 1 \\\\ 1 & -1 \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "h" self.draw_label = "H" self.target_qubits = (q,) self.init_args = [q] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "h"
[docs]class X(Gate): """The Pauli-:math:`X` gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 0 & 1 \\\\ 1 & 0 \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "x" self.draw_label = "X" self.target_qubits = (q,) self.init_args = [q] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "x" @Gate.check_controls def controlled_by(self, *q): """Fall back to CNOT and Toffoli if there is one or two controls.""" if len(q) == 1: gate = CNOT(q[0], self.target_qubits[0]) elif len(q) == 2: gate = TOFFOLI(q[0], q[1], self.target_qubits[0]) else: gate = super().controlled_by(*q) return gate
[docs] def decompose(self, *free, use_toffolis=True): """Decomposes multi-control ``X`` gate to one-qubit, ``CNOT`` and ``TOFFOLI`` gates. Args: free: Ids of free qubits to use for the gate decomposition. use_toffolis: If ``True`` the decomposition contains only ``TOFFOLI`` gates. If ``False`` a congruent representation is used for ``TOFFOLI`` gates. See :class:`qibo.gates.TOFFOLI` for more details on this representation. Returns: List with one-qubit, ``CNOT`` and ``TOFFOLI`` gates that have the same effect as applying the original multi-control gate. """ if set(free) & set(self.qubits): raise_error( ValueError, "Cannot decompose multi-control X gate if free " "qubits coincide with target or controls.", ) controls = self.control_qubits target = self.target_qubits[0] m = len(controls) if m < 3: return [self.__class__(target).controlled_by(*controls)] decomp_gates = [] n = m + 1 + len(free) if (n >= 2 * m - 1) and (m >= 3): gates1 = [ TOFFOLI( controls[m - 2 - i], free[m - 4 - i], free[m - 3 - i] ).congruent(use_toffolis=use_toffolis) for i in range(m - 3) ] gates2 = TOFFOLI(controls[0], controls[1], free[0]).congruent( use_toffolis=use_toffolis ) first_toffoli = TOFFOLI(controls[m - 1], free[m - 3], target) decomp_gates.append(first_toffoli) for gates in gates1: decomp_gates.extend(gates) decomp_gates.extend(gates2) for gates in gates1[::-1]: decomp_gates.extend(gates) elif len(free) >= 1: m1 = n // 2 free1 = controls[m1:] + (target,) + tuple(free[1:]) x1 = self.__class__(free[0]).controlled_by(*controls[:m1]) part1 = x1.decompose(*free1, use_toffolis=use_toffolis) free2 = controls[:m1] + tuple(free[1:]) controls2 = controls[m1:] + (free[0],) x2 = self.__class__(target).controlled_by(*controls2) part2 = x2.decompose(*free2, use_toffolis=use_toffolis) decomp_gates = [*part1, *part2] else: # pragma: no cover # impractical case raise_error( NotImplementedError, "X decomposition not implemented for zero free qubits.", ) decomp_gates.extend(decomp_gates) return decomp_gates
[docs] def basis_rotation(self): return H(self.target_qubits[0])
[docs]class Y(Gate): """The Pauli-:math:`Y` gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 0 & -i \\\\ i & 0 \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "y" self.draw_label = "Y" self.target_qubits = (q,) self.init_args = [q] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "y" @Gate.check_controls def controlled_by(self, *q): """Fall back to CY if there is only one control.""" if len(q) == 1: gate = CY(q[0], self.target_qubits[0]) else: gate = super().controlled_by(*q) return gate
[docs] def basis_rotation(self): from qibo import matrices # pylint: disable=C0415 matrix = (matrices.Y + matrices.Z) / math.sqrt(2) return Unitary(matrix, self.target_qubits[0], trainable=False)
[docs]class Z(Gate): """The Pauli-:math:`Z` gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 \\\\ 0 & -1 \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "z" self.draw_label = "Z" self.target_qubits = (q,) self.init_args = [q] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "z" @Gate.check_controls def controlled_by(self, *q): """Fall back to CZ if there is only one control.""" if len(q) == 1: gate = CZ(q[0], self.target_qubits[0]) else: gate = super().controlled_by(*q) return gate
[docs] def basis_rotation(self): return None
[docs]class SX(Gate): """The :math:`\\sqrt{X}` gate. Corresponds to the following unitary matrix .. math:: \\frac{1}{2} \\, \\begin{pmatrix} 1 + i & 1 - i \\\\ 1 - i & 1 + i \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "sx" self.draw_label = "SX" self.target_qubits = (q,) self.init_args = [q] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "sx"
[docs] def decompose(self): """Decomposition of :math:`\\sqrt{X}` up to global phase. A global phase difference exists between the definitions of :math:`\\sqrt{X}` and :math:`\\text{RX}(\\pi / 2)`, with :math:`\\text{RX}` being the :class:`qibo.gates.RX` gate. More precisely, :math:`\\sqrt{X} = e^{i \\pi / 4} \\, \\text{RX}(\\pi / 2)`. """ from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self)
def _dagger(self): """""" return SXDG(self.init_args[0])
class SXDG(Gate): """The conjugate transpose of the :math:`\\sqrt{X}` gate. Corresponds to the following unitary matrix .. math:: \\frac{1}{2} \\, \\begin{pmatrix} 1 - i & 1 + i \\\\ 1 + i & 1 - i \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "sxdg" self.draw_label = "SXDG" self.target_qubits = (q,) self.init_args = [q] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "sxdg" def decompose(self): """Decomposition of :math:`(\\sqrt{X})^{\\dagger}` up to global phase. A global phase difference exists between the definitions of :math:`\\sqrt{X}` and :math:`\\text{RX}(\\pi / 2)`, with :math:`\\text{RX}` being the :class:`qibo.gates.RX` gate. More precisely, :math:`(\\sqrt{X})^{\\dagger} = e^{-i \\pi / 4} \\, \\text{RX}(-\\pi / 2)`. """ from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self) def _dagger(self): """""" return SX(self.init_args[0])
[docs]class S(Gate): """The :math:`S` gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 \\\\ 0 & i \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "s" self.draw_label = "S" self.target_qubits = (q,) self.init_args = [q] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "s" def _dagger(self): return SDG(*self.init_args)
class SDG(Gate): """The conjugate transpose of the :math:`S` gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 \\\\ 0 & -i \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "sdg" self.draw_label = "SDG" self.target_qubits = (q,) self.init_args = [q] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "sdg" def _dagger(self): return S(*self.init_args)
[docs]class T(Gate): """The T gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 \\\\ 0 & e^{i \\pi / 4} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "t" self.draw_label = "T" self.target_qubits = (q,) self.init_args = [q] self.unitary = True @property def qasm_label(self): return "t" def _dagger(self): return TDG(*self.init_args)
class TDG(Gate): """The conjugate transpose of the T gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 \\\\ 0 & e^{-i \\pi / 4} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "tdg" self.draw_label = "TDG" self.target_qubits = (q,) self.init_args = [q] self.unitary = True @property def qasm_label(self): return "tdg" def _dagger(self): return T(*self.init_args)
[docs]class I(Gate): """The identity gate. Args: *q (int): the qubit id numbers. """ def __init__(self, *q): super().__init__() self.name = "id" self.draw_label = "I" self.target_qubits = tuple(q) self.init_args = q self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "id"
[docs]class Align(ParametrizedGate): """Aligns proceeding qubit operations and (optionally) waits ``delay`` amount of time. .. note:: For this gate, the ``trainable`` parameter is by default set to ``False``. Args: q (int): The qubit ID. delay (int, optional): The time (in ns) for which to delay circuit execution on the specified qubits. Defaults to ``0`` (zero). """ def __init__(self, q, delay=0, trainable=False): if not isinstance(delay, int): raise_error( TypeError, f"delay must be type int, but it is type {type(delay)}." ) if delay < 0.0: raise_error(ValueError, "Delay must not be negative.") super().__init__(trainable) self.name = "align" self.draw_label = f"A({delay})" self.init_args = [q] self.init_kwargs = {"name": self.name, "delay": delay, "trainable": trainable} self.target_qubits = (q,) self._parameters = (delay,) self.nparams = 1
def _is_clifford_given_angle(angle): """Helper function to update Clifford boolean condition according to the given angle ``angle``.""" return isinstance(angle, (float, int)) and (angle % (np.pi / 2)).is_integer() class _Rn_(ParametrizedGate): """Abstract class for defining the RX, RY and RZ rotations. Args: q (int): the qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.AbstractCircuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q, theta, trainable=True): super().__init__(trainable) self.name = None self._controlled_gate = None self.target_qubits = (q,) self.unitary = True self.initparams = theta if isinstance(theta, Parameter): theta = theta() self.parameters = theta self.init_args = [q] self.init_kwargs = {"theta": theta, "trainable": trainable} @property def clifford(self): return _is_clifford_given_angle(self.parameters[0]) def _dagger(self) -> "Gate": """""" return self.__class__( self.target_qubits[0], -self.parameters[0] ) # pylint: disable=E1130 @Gate.check_controls def controlled_by(self, *q): """Fall back to CRn if there is only one control.""" if len(q) == 1: gate = self._controlled_gate( # pylint: disable=E1102 q[0], self.target_qubits[0], **self.init_kwargs ) else: gate = super().controlled_by(*q) return gate
[docs]class RX(_Rn_): """Rotation around the X-axis of the Bloch sphere. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} \\cos \\frac{\\theta }{2} & -i\\sin \\frac{\\theta }{2} \\\\ -i\\sin \\frac{\\theta }{2} & \\cos \\frac{\\theta }{2} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.AbstractCircuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q, theta, trainable=True): super().__init__(q, theta, trainable) self.name = "rx" self.draw_label = "RX" self._controlled_gate = CRX @property def qasm_label(self): return "rx"
[docs] def generator_eigenvalue(self): return 0.5
[docs]class RY(_Rn_): """Rotation around the Y-axis of the Bloch sphere. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} \\cos \\frac{\\theta }{2} & -\\sin \\frac{\\theta }{2} \\\\ \\sin \\frac{\\theta }{2} & \\cos \\frac{\\theta }{2} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q, theta, trainable=True): super().__init__(q, theta, trainable) self.name = "ry" self.draw_label = "RY" self._controlled_gate = CRY @property def qasm_label(self): return "ry"
[docs] def generator_eigenvalue(self): return 0.5
[docs]class RZ(_Rn_): """Rotation around the Z-axis of the Bloch sphere. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} e^{-i \\theta / 2} & 0 \\\\ 0 & e^{i \\theta / 2} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q, theta, trainable=True): super().__init__(q, theta, trainable) self.name = "rz" self.draw_label = "RZ" self._controlled_gate = CRZ @property def qasm_label(self): return "rz"
[docs] def generator_eigenvalue(self): return 0.5
[docs]class PRX(ParametrizedGate): """Phase :math:`RX` gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} \\cos{(\\theta / 2)} & -i e^{-i \\phi} \\sin{(\\theta / 2)} \\ -i e^{i \\phi} \\sin{(\\theta / 2)} & \\cos{(\\theta / 2)} \\end{pmatrix} Args: q (int): the qubit id number. theta (float): the first angle corresponding to a rotation angle. phi (float): the second angle correspoding to a phase angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q, theta, phi, trainable=True): super().__init__(trainable) self.name = "prx" self.draw_label = "prx" self.target_qubits = (q,) self.unitary = True self.parameter_names = ["theta", "phi"] self.parameters = theta, phi self.theta = theta self.phi = phi self.nparams = 2 self.init_args = [q] self.init_kwargs = { "theta": theta, "phi": phi, "trainable": trainable, } @property def qasm_label(self): return "prx" def _dagger(self) -> "Gate": theta = -self.theta phi = self.phi return self.__class__( self.target_qubits[0], theta, phi ) # pylint: disable=E1130
[docs] def decompose(self): """Decomposition of Phase-:math:`RX` gate.""" from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self)
[docs]class GPI(ParametrizedGate): """The GPI gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 0 & e^{- i \\phi} \\\\ e^{i \\phi} & 0 \\\\ \\end{pmatrix} Args: q (int): the qubit id number. phi (float): phase. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.AbstractCircuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q, phi, trainable=True): super().__init__(trainable) self.name = "gpi" self.draw_label = "GPI" self.target_qubits = (q,) self.unitary = True self.parameter_names = "phi" self.parameters = phi self.nparams = 1 self.init_args = [q] self.init_kwargs = {"phi": phi, "trainable": trainable} @property def qasm_label(self): return "gpi"
[docs]class GPI2(ParametrizedGate): """The GPI2 gate. Corresponds to the following unitary matrix .. math:: \\frac{1}{\\sqrt{2}} \\, \\begin{pmatrix} 1 & -i e^{- i \\phi} \\\\ -i e^{i \\phi} & 1 \\\\ \\end{pmatrix} Args: q (int): the qubit id number. phi (float): phase. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.AbstractCircuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q, phi, trainable=True): super().__init__(trainable) self.name = "gpi2" self.draw_label = "GPI2" self.target_qubits = (q,) self.unitary = True self.parameter_names = "phi" self.parameters = phi self.nparams = 1 self.init_args = [q] self.init_kwargs = {"phi": phi, "trainable": trainable} @property def qasm_label(self): return "gpi2" @property def clifford(self): return _is_clifford_given_angle(self.parameters[0]) def _dagger(self) -> "Gate": """""" return self.__class__(self.target_qubits[0], self.parameters[0] + math.pi)
class _Un_(ParametrizedGate): """Abstract class for defining the U1, U2 and U3 gates. Args: q (int): the qubit id number. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q, trainable=True): super().__init__(trainable) self.name = None self._controlled_gate = None self.nparams = 0 self.target_qubits = (q,) self.init_args = [q] self.unitary = True self.init_kwargs = {"trainable": trainable} @Gate.check_controls def controlled_by(self, *q): """Fall back to CUn if there is only one control.""" if len(q) == 1: gate = self._controlled_gate( # pylint: disable=E1102 q[0], self.target_qubits[0], **self.init_kwargs ) else: gate = super().controlled_by(*q) return gate
[docs]class U1(_Un_): """First general unitary gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 \\\\ 0 & e^{i \\theta} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.AbstractCircuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q, theta, trainable=True): super().__init__(q, trainable=trainable) self.name = "u1" self.draw_label = "U1" self._controlled_gate = CU1 self.nparams = 1 self.parameters = theta self.init_kwargs = {"theta": theta, "trainable": trainable} @property def qasm_label(self): return "u1" def _dagger(self) -> "Gate": theta = -self.parameters[0] return self.__class__(self.target_qubits[0], theta) # pylint: disable=E1130
[docs]class U2(_Un_): """Second general unitary gate. Corresponds to the following unitary matrix .. math:: \\frac{1}{\\sqrt{2}} \\begin{pmatrix} e^{-i(\\phi + \\lambda )/2} & -e^{-i(\\phi - \\lambda )/2} \\\\ e^{i(\\phi - \\lambda )/2} & e^{i (\\phi + \\lambda )/2} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. phi (float): first rotation angle. lamb (float): second rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q, phi, lam, trainable=True): super().__init__(q, trainable=trainable) self.name = "u2" self.draw_label = "U2" self._controlled_gate = CU2 self.nparams = 2 self._phi, self._lam = None, None self.init_kwargs = {"phi": phi, "lam": lam, "trainable": trainable} self.parameter_names = ["phi", "lam"] self.parameters = phi, lam @property def qasm_label(self): return "u2" def _dagger(self) -> "Gate": """""" phi, lam = self.parameters phi, lam = math.pi - lam, -math.pi - phi return self.__class__(self.target_qubits[0], phi, lam)
[docs]class U3(_Un_): """Third general unitary gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} e^{-i(\\phi + \\lambda )/2}\\cos\\left (\\frac{\\theta }{2}\\right ) & -e^{-i(\\phi - \\lambda )/2}\\sin\\left (\\frac{\\theta }{2}\\right ) \\\\ e^{i(\\phi - \\lambda )/2}\\sin\\left (\\frac{\\theta }{2}\\right ) & e^{i (\\phi + \\lambda )/2}\\cos\\left (\\frac{\\theta }{2}\\right ) \\\\ \\end{pmatrix} Args: q (int): the qubit id number. theta (float): first rotation angle. phi (float): second rotation angle. lamb (float): third rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q, theta, phi, lam, trainable=True): super().__init__(q, trainable=trainable) self.name = "u3" self.draw_label = "U3" self._controlled_gate = CU3 self.nparams = 3 self._theta, self._phi, self._lam = None, None, None self.init_kwargs = { "theta": theta, "phi": phi, "lam": lam, "trainable": trainable, } self.parameter_names = ["theta", "phi", "lam"] self.parameters = theta, phi, lam @property def qasm_label(self): return "u3" def _dagger(self) -> "Gate": """""" theta, lam, phi = tuple(-x for x in self.parameters) # pylint: disable=E1130 return self.__class__(self.target_qubits[0], theta, phi, lam)
[docs] def decompose(self) -> List[Gate]: """Decomposition of :math:`U_{3}` up to global phase. A global phase difference exists between the definitions of :math:`U3` and this decomposition. More precisely, .. math:: U_{3}(\\theta, \\phi, \\lambda) = e^{i \\, \\frac{3 \\pi}{2}} \\, \\text{RZ}(\\phi + \\pi) \\, \\sqrt{X} \\, \\text{RZ}(\\theta + \\pi) \\, \\sqrt{X} \\, \\text{RZ}(\\lambda) \\, , where :math:`\\text{RZ}` and :math:`\\sqrt{X}` are, respectively, :class:`qibo.gates.RZ` and :class`qibo.gates.SX`. """ from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self)
[docs]class U1q(_Un_): """Native single-qubit gate in the Quantinuum platform. Corresponds to the following unitary matrix: .. math:: \\begin{pmatrix} \\cos\\left(\\frac{\\theta}{2}\\right) & -i \\, e^{-i \\, \\phi} \\, \\sin\\left(\\frac{\\theta}{2}\\right) \\\\ -i \\, e^{i \\, \\phi} \\, \\sin\\left(\\frac{\\theta}{2}\\right) & \\cos\\left(\\frac{\\theta}{2}\\right) \\\\ \\end{pmatrix} Note that :math:`U_{1q}(\\theta, \\phi) = U_{3}(\\theta, \\phi - \\frac{\\pi}{2}, \\frac{\\pi}{2} - \\phi)`, where :math:`U_{3}` is :class:`qibo.gates.U3`. Args: q (int): the qubit id number. theta (float): first rotation angle. phi (float): second rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q, theta, phi, trainable=True): super().__init__(q, trainable=trainable) self.name = "u1q" self.draw_label = "U1q" self.nparams = 2 self._theta, self._phi = None, None self.init_kwargs = {"theta": theta, "phi": phi, "trainable": trainable} self.parameter_names = ["theta", "phi"] self.parameters = theta, phi def _dagger(self) -> "Gate": """""" theta, phi = self.init_kwargs["theta"], self.init_kwargs["phi"] return self.__class__(self.init_args[0], -theta, phi)
[docs]class CNOT(Gate): """The Controlled-NOT gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 0 & 1 \\\\ 0 & 0 & 1 & 0 \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. """ def __init__(self, q0, q1): super().__init__() self.name = "cx" self.draw_label = "X" self.control_qubits = (q0,) self.target_qubits = (q1,) self.init_args = [q0, q1] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "cx"
[docs] def decompose(self, *free, use_toffolis: bool = True) -> List[Gate]: q0, q1 = self.control_qubits[0], self.target_qubits[0] return [self.__class__(q0, q1)]
[docs]class CY(Gate): """The Controlled-:math:`Y` gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 0 & -i \\\\ 0 & 0 & i & 0 \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. """ def __init__(self, q0, q1): super().__init__() self.name = "cy" self.draw_label = "Y" self.control_qubits = (q0,) self.target_qubits = (q1,) self.init_args = [q0, q1] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "cy"
[docs] def decompose(self) -> List[Gate]: """Decomposition of :math:`\\text{CY}` gate. Decompose :math:`\\text{CY}` gate into :class:`qibo.gates.SDG` in the target qubit, followed by :class:`qibo.gates.CNOT`, followed by a :class:`qibo.gates.S` in the target qubit. """ from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self)
[docs]class CZ(Gate): """The Controlled-Phase gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 1 & 0 \\\\ 0 & 0 & 0 & -1 \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. """ def __init__(self, q0, q1): super().__init__() self.name = "cz" self.draw_label = "Z" self.control_qubits = (q0,) self.target_qubits = (q1,) self.init_args = [q0, q1] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "cz"
[docs] def decompose(self) -> List[Gate]: """Decomposition of :math:`\\text{CZ}` gate. Decompose :math:`\\text{CZ}` gate into :class:`qibo.gates.H` in the target qubit, followed by :class:`qibo.gates.CNOT`, followed by another :class:`qibo.gates.H` in the target qubit """ from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self)
[docs]class CSX(Gate): """The Controlled-:math:`\\sqrt{X}` gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & e^{i\\pi/4} & e^{-i\\pi/4} \\\\ 0 & 0 & e^{-i\\pi/4} & e^{i\\pi/4} \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. """ def __init__(self, q0, q1): super().__init__() self.name = "csx" self.draw_label = "CSX" self.control_qubits = (q0,) self.target_qubits = (q1,) self.init_args = [q0, q1] self.unitary = True @property def qasm_label(self): return "csx" def decompose(self, *free, use_toffolis: bool = True) -> List[Gate]: """""" from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self) def _dagger(self): """""" return CSXDG(*self.init_args)
class CSXDG(Gate): """The transpose conjugate of the Controlled-:math:`\\sqrt{X}` gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & e^{-i\\pi/4} & e^{i\\pi/4} \\\\ 0 & 0 & e^{i\\pi/4} & e^{-i\\pi/4} \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. """ def __init__(self, q0, q1): super().__init__() self.name = "csxdg" self.draw_label = "CSXDG" self.control_qubits = (q0,) self.target_qubits = (q1,) self.init_args = [q0, q1] self.unitary = True @property def qasm_label(self): return "csxdg" def decompose(self, *free, use_toffolis: bool = True) -> List[Gate]: """""" from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self) def _dagger(self): """""" return CSX(*self.init_args) class _CRn_(ParametrizedGate): """Abstract method for defining the CRX, CRY and CRZ gates. Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(trainable) self.name = None self.control_qubits = (q0,) self.target_qubits = (q1,) self.parameters = theta self.unitary = True self.init_args = [q0, q1] self.init_kwargs = {"theta": theta, "trainable": trainable} @property def clifford(self): return _is_clifford_given_angle(self.parameters[0]) def _dagger(self) -> "Gate": """""" q0 = self.control_qubits[0] q1 = self.target_qubits[0] theta = -self.parameters[0] return self.__class__(q0, q1, theta) # pylint: disable=E1130
[docs]class CRX(_CRn_): """Controlled rotation around the X-axis for the Bloch sphere. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & \\cos \\frac{\\theta }{2} & -i\\sin \\frac{\\theta }{2} \\\\ 0 & 0 & -i\\sin \\frac{\\theta }{2} & \\cos \\frac{\\theta }{2} \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(q0, q1, theta, trainable) self.name = "crx" self.draw_label = "RX" @property def qasm_label(self): return "crx"
[docs]class CRY(_CRn_): """Controlled rotation around the Y-axis for the Bloch sphere. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & \\cos \\frac{\\theta }{2} & -\\sin \\frac{\\theta }{2} \\\\ 0 & 0 & \\sin \\frac{\\theta }{2} & \\cos \\frac{\\theta }{2} \\\\ \\end{pmatrix} Note that this differs from the :class:`qibo.gates.RZ` gate. Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(q0, q1, theta, trainable) self.name = "cry" self.draw_label = "RY" @property def qasm_label(self): return "cry"
[docs]class CRZ(_CRn_): """Controlled rotation around the Z-axis for the Bloch sphere. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & e^{-i \\theta / 2} & 0 \\\\ 0 & 0 & 0 & e^{i \\theta / 2} \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(q0, q1, theta, trainable) self.name = "crz" self.draw_label = "RZ" @property def qasm_label(self): return "crz"
class _CUn_(ParametrizedGate): """Abstract method for defining the CU1, CU2 and CU3 gates. Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, trainable=True): super().__init__(trainable) self.name = None self.nparams = 0 self.control_qubits = (q0,) self.target_qubits = (q1,) self.init_args = [q0, q1] self.unitary = True self.init_kwargs = {"trainable": trainable}
[docs]class CU1(_CUn_): """Controlled first general unitary gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 1 & 0 \\\\ 0 & 0 & 0 & e^{i \\theta } \\\\ \\end{pmatrix} Note that this differs from the :class:`qibo.gates.CRZ` gate. Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(q0, q1, trainable=trainable) self.name = "cu1" self.draw_label = "U1" self.nparams = 1 self.parameters = theta self.init_kwargs = {"theta": theta, "trainable": trainable} @property def qasm_label(self): return "cu1" def _dagger(self) -> "Gate": """""" q0 = self.control_qubits[0] q1 = self.target_qubits[0] theta = -self.parameters[0] return self.__class__(q0, q1, theta) # pylint: disable=E1130
[docs]class CU2(_CUn_): """Controlled second general unitary gate. Corresponds to the following unitary matrix .. math:: \\frac{1}{\\sqrt{2}} \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & e^{-i(\\phi + \\lambda )/2} & -e^{-i(\\phi - \\lambda )/2} \\\\ 0 & 0 & e^{i(\\phi - \\lambda )/2} & e^{i (\\phi + \\lambda )/2} \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. phi (float): first rotation angle. lamb (float): second rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, phi, lam, trainable=True): super().__init__(q0, q1, trainable=trainable) self.name = "cu2" self.draw_label = "U2" self.nparams = 2 self.init_kwargs = {"phi": phi, "lam": lam, "trainable": trainable} self.parameter_names = ["phi", "lam"] self.parameters = phi, lam def _dagger(self) -> "Gate": """""" q0 = self.control_qubits[0] q1 = self.target_qubits[0] phi, lam = self.parameters phi, lam = math.pi - lam, -math.pi - phi return self.__class__(q0, q1, phi, lam)
[docs]class CU3(_CUn_): """Controlled third general unitary gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & e^{-i(\\phi + \\lambda )/2}\\cos\\left (\\frac{\\theta }{2}\\right ) & -e^{-i(\\phi - \\lambda )/2}\\sin\\left (\\frac{\\theta }{2}\\right ) \\\\ 0 & 0 & e^{i(\\phi - \\lambda )/2}\\sin\\left (\\frac{\\theta }{2}\\right ) & e^{i (\\phi + \\lambda )/2}\\cos\\left (\\frac{\\theta }{2}\\right ) \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. theta (float): first rotation angle. phi (float): second rotation angle. lamb (float): third rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, phi, lam, trainable=True): super().__init__(q0, q1, trainable=trainable) self.name = "cu3" self.draw_label = "U3" self.nparams = 3 self._theta, self._phi, self._lam = None, None, None self.init_kwargs = { "theta": theta, "phi": phi, "lam": lam, "trainable": trainable, } self.parameter_names = ["theta", "phi", "lam"] self.parameters = theta, phi, lam @property def qasm_label(self): return "cu3" def _dagger(self) -> "Gate": """""" q0 = self.control_qubits[0] q1 = self.target_qubits[0] theta, lam, phi = tuple(-x for x in self.parameters) # pylint: disable=E1130 return self.__class__(q0, q1, theta, phi, lam)
[docs]class SWAP(Gate): """The swap gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 0 & 1 \\\\ \\end{pmatrix} Args: q0 (int): the first qubit to be swapped id number. q1 (int): the second qubit to be swapped id number. """ def __init__(self, q0, q1): super().__init__() self.name = "swap" self.draw_label = "x" self.target_qubits = (q0, q1) self.init_args = [q0, q1] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "swap"
[docs]class iSWAP(Gate): """The iSWAP gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 0 & i & 0 \\\\ 0 & i & 0 & 0 \\\\ 0 & 0 & 0 & 1 \\\\ \\end{pmatrix} Args: q0 (int): the first qubit to be swapped id number. q1 (int): the second qubit to be swapped id number. """ def __init__(self, q0, q1): super().__init__() self.name = "iswap" self.draw_label = "i" self.target_qubits = (q0, q1) self.init_args = [q0, q1] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "iswap"
[docs]class SiSWAP(Gate): """The :math:`\\sqrt{\\text{iSWAP}}` gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1/\\sqrt{2} & i/\\sqrt{2} & 0 \\\\ 0 & i/\\sqrt{2} & 1/\\sqrt{2} & 0 \\\\ 0 & 0 & 0 & 1 \\\\ \\end{pmatrix} Args: q0 (int): the first qubit to be swapped id number. q1 (int): the second qubit to be swapped id number. """ def __init__(self, q0, q1): super().__init__() self.name = "siswap" self.draw_label = "si" self.target_qubits = (q0, q1) self.init_args = [q0, q1] self.unitary = True def _dagger(self) -> "Gate": return SiSWAPDG(*self.qubits)
class SiSWAPDG(Gate): """The :math:`\\left(\\sqrt{\\text{iSWAP}}\\right)^{\\dagger}` gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1/\\sqrt{2} & -i/\\sqrt{2} & 0 \\\\ 0 & -i/\\sqrt{2} & 1/\\sqrt{2} & 0 \\\\ 0 & 0 & 0 & 1 \\\\ \\end{pmatrix} Args: q0 (int): the first qubit to be swapped id number. q1 (int): the second qubit to be swapped id number. """ def __init__(self, q0, q1): super().__init__() self.name = "siswapdg" self.draw_label = "sidg" self.target_qubits = (q0, q1) self.init_args = [q0, q1] self.unitary = True def _dagger(self) -> "Gate": return SiSWAP(*self.qubits)
[docs]class FSWAP(Gate): """The fermionic swap gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 0 & -1 \\\\ \\end{pmatrix} Args: q0 (int): the first qubit to be f-swapped id number. q1 (int): the second qubit to be f-swapped id number. """ def __init__(self, q0, q1): super().__init__() self.name = "fswap" self.draw_label = "fx" self.target_qubits = (q0, q1) self.init_args = [q0, q1] self.unitary = True @property def clifford(self): return True @property def qasm_label(self): return "fswap" def decompose(self, *free, use_toffolis: bool = True) -> List[Gate]: """""" q0, q1 = self.target_qubits return [X(q1)] + GIVENS(q0, q1, np.pi / 2).decompose() + [X(q0)]
[docs]class fSim(ParametrizedGate): """The fSim gate defined in `arXiv:2001.08343 <https://arxiv.org/abs/2001.08343>`_. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & \\cos \\theta & -i\\sin \\theta & 0 \\\\ 0 & -i\\sin \\theta & \\cos \\theta & 0 \\\\ 0 & 0 & 0 & e^{-i \\phi } \\\\ \\end{pmatrix} Args: q0 (int): the first qubit to be swapped id number. q1 (int): the second qubit to be swapped id number. theta (float): Angle for the one-qubit rotation. phi (float): Angle for the ``|11>`` phase. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ # TODO: Check how this works with QASM. def __init__(self, q0, q1, theta, phi, trainable=True): super().__init__(trainable) self.name = "fsim" self.draw_label = "f" self.target_qubits = (q0, q1) self.unitary = True self.parameter_names = ["theta", "phi"] self.parameters = theta, phi self.nparams = 2 self.init_args = [q0, q1] self.init_kwargs = {"theta": theta, "phi": phi, "trainable": trainable} def _dagger(self) -> "Gate": """""" q0, q1 = self.target_qubits params = (-x for x in self.parameters) # pylint: disable=E1130 return self.__class__(q0, q1, *params)
[docs]class SYC(Gate): """The Sycamore gate, defined in the Supplementary Information of `Quantum supremacy using a programmable superconducting processor <https://www.nature.com/articles/s41586-019-1666-5>`_. Corresponding to the following unitary matrix .. math:: \\text{fSim}(\\pi / 2, \\, \\pi / 6) = \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 0 & -i & 0 \\\\ 0 & -i & 0 & 0 \\\\ 0 & 0 & 0 & e^{-i \\pi / 6} \\\\ \\end{pmatrix} \\, , where :math:`\\text{fSim}` is the :class:`qibo.gates.fSim` gate. Args: q0 (int): the first qubit to be swapped id number. q1 (int): the second qubit to be swapped id number. """ def __init__(self, q0, q1): super().__init__() self.name = "syc" self.draw_label = "SYC" self.target_qubits = (q0, q1) self.init_args = [q0, q1] self.unitary = True def _dagger(self) -> "Gate": """""" return fSim(*self.target_qubits, -np.pi / 2, -np.pi / 6)
[docs]class GeneralizedfSim(ParametrizedGate): """The fSim gate with a general rotation. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & R_{00} & R_{01} & 0 \\\\ 0 & R_{10} & R_{11} & 0 \\\\ 0 & 0 & 0 & e^{-i \\phi } \\\\ \\end{pmatrix} Args: q0 (int): the first qubit to be swapped id number. q1 (int): the second qubit to be swapped id number. unitary (np.ndarray): Unitary that corresponds to the one-qubit rotation. phi (float): Angle for the ``|11>`` phase. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, unitary, phi, trainable=True): super().__init__(trainable) self.name = "generalizedfsim" self.draw_label = "gf" self.target_qubits = (q0, q1) self.unitary = True self.parameter_names = ["unitary", "phi"] self.parameters = unitary, phi self.nparams = 5 self.init_args = [q0, q1] self.init_kwargs = {"unitary": unitary, "phi": phi, "trainable": trainable} def _dagger(self): q0, q1 = self.target_qubits u, phi = self.parameters init_kwargs = dict(self.init_kwargs) init_kwargs["unitary"] = np.conj(np.transpose(u)) init_kwargs["phi"] = -phi return self.__class__(q0, q1, **init_kwargs) @Gate.parameters.setter def parameters(self, x): shape = tuple(x[0].shape) if shape != (2, 2): raise_error( ValueError, f"Invalid rotation shape {shape} for generalized fSim gate", ) ParametrizedGate.parameters.fset(self, x) # pylint: disable=no-member
class _Rnn_(ParametrizedGate): """Abstract class for defining the RXX, RYY, RZZ, and RZX rotations. Args: q0 (int): the first entangled qubit id number. q1 (int): the second entangled qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.AbstractCircuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(trainable) self.name = None self._controlled_gate = None self.target_qubits = (q0, q1) self.unitary = True self.parameters = theta self.init_args = [q0, q1] self.init_kwargs = {"theta": theta, "trainable": trainable} def _dagger(self) -> "Gate": """""" q0, q1 = self.target_qubits return self.__class__(q0, q1, -self.parameters[0]) # pylint: disable=E1130
[docs]class RXX(_Rnn_): """Parametric 2-qubit XX interaction, or rotation about XX-axis. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} \\cos \\frac{\\theta }{2} & 0 & 0 & -i\\sin \\frac{\\theta }{2} \\\\ 0 & \\cos \\frac{\\theta }{2} & -i\\sin \\frac{\\theta }{2} & 0 \\\\ 0 & -i\\sin \\frac{\\theta }{2} & \\cos \\frac{\\theta }{2} & 0 \\\\ -i\\sin \\frac{\\theta }{2} & 0 & 0 & \\cos \\frac{\\theta }{2} \\\\ \\end{pmatrix} Args: q0 (int): the first entangled qubit id number. q1 (int): the second entangled qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.AbstractCircuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(q0, q1, theta, trainable) self.name = "rxx" self.draw_label = "RXX" @property def qasm_label(self): return "rxx"
[docs]class RYY(_Rnn_): """Parametric 2-qubit YY interaction, or rotation about YY-axis. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} \\cos \\frac{\\theta }{2} & 0 & 0 & i\\sin \\frac{\\theta }{2} \\\\ 0 & \\cos \\frac{\\theta }{2} & -i\\sin \\frac{\\theta }{2} & 0 \\\\ 0 & -i\\sin \\frac{\\theta }{2} & \\cos \\frac{\\theta }{2} & 0 \\\\ i\\sin \\frac{\\theta }{2} & 0 & 0 & \\cos \\frac{\\theta }{2} \\\\ \\end{pmatrix} Args: q0 (int): the first entangled qubit id number. q1 (int): the second entangled qubit id number. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(q0, q1, theta, trainable) self.name = "ryy" self.draw_label = "RYY" @property def qasm_label(self): return "ryy"
[docs]class RZZ(_Rnn_): """Parametric 2-qubit ZZ interaction, or rotation about ZZ-axis. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} e^{-i \\theta / 2} & 0 & 0 & 0 \\\\ 0 & e^{i \\theta / 2} & 0 & 0 \\\\ 0 & 0 & e^{i \\theta / 2} & 0 \\\\ 0 & 0 & 0 & e^{-i \\theta / 2} \\\\ \\end{pmatrix} Args: q0 (int): the first entangled qubit id number. q1 (int): the second entangled qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(q0, q1, theta, trainable) self.name = "rzz" self.draw_label = "RZZ" @property def qasm_label(self): return "rzz"
[docs]class RZX(_Rnn_): """Parametric 2-qubit ZX interaction, or rotation about ZX-axis. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} \\text{RX}(\\theta) & 0 \\\\ 0 & \\text{RX}(-\\theta) \\\\ \\end{pmatrix} = \\begin{pmatrix} \\cos{\\frac{\\theta}{2}} & -i \\sin{\\frac{\\theta}{2}} & 0 & 0 \\\\ -i \\sin{\\frac{\\theta}{2}} & \\cos{\\frac{\\theta}{2}} & 0 & 0 \\\\ 0 & 0 & \\cos{\\frac{\\theta}{2}} & i \\sin{\\frac{\\theta}{2}} \\\\ 0 & 0 & i \\sin{\\frac{\\theta}{2}} & \\cos{\\frac{\\theta}{2}} \\\\ \\end{pmatrix} \\, , where :math:`\\text{RX}` is the :class:`qibo.gates.RX` gate. Args: q0 (int): the first entangled qubit id number. q1 (int): the second entangled qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(q0, q1, theta, trainable) self.name = "rzx" self.draw_label = "RZX" def decompose(self, *free, use_toffolis: bool = True) -> List[Gate]: """""" from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self)
[docs]class RXXYY(_Rnn_): """Parametric 2-qubit :math:`XX + YY` interaction, or rotation about :math:`XX + YY`-axis. Corresponds to the following unitary matrix .. math:: \\exp\\left(-i \\frac{\\theta}{4}(XX + YY)\\right) = \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & \\cos{\\frac{\\theta}{2}} & -i \\sin{\\frac{\\theta}{2}} & 0 \\\\ 0 & -i \\sin{\\frac{\\theta}{2}} & \\cos{\\frac{\\theta}{2}} & 0 \\\\ 0 & 0 & 0 & 1 \\\\ \\end{pmatrix} \\, , Args: q0 (int): the first entangled qubit id number. q1 (int): the second entangled qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(q0, q1, theta, trainable) self.name = "rxxyy" self.draw_label = "RXXYY"
[docs] def decompose(self, *free, use_toffolis: bool = True) -> List[Gate]: """Decomposition of :math:`\\text{R_{XX-YY}}` up to global phase. This decomposition has a global phase difference with respect to the original gate due to a phase difference in :math:`\\left(\\sqrt{X}\\right)^{\\dagger}`. """ from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self)
[docs]class MS(ParametrizedGate): """The Mølmer–Sørensen (MS) gate is a two-qubit gate native to trapped ions. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} \\cos(\\theta / 2) & 0 & 0 & -i e^{-i( \\phi_0 + \\phi_1)} \\sin(\\theta / 2) \\\\ 0 & \\cos(\\theta / 2) & -i e^{-i( \\phi_0 - \\phi_1)} \\sin(\\theta / 2) & 0 \\\\ 0 & -i e^{i( \\phi_0 - \\phi_1)} \\sin(\\theta / 2) & \\cos(\\theta / 2) & 0 \\\\ -i e^{i( \\phi_0 + \\phi_1)} \\sin(\\theta / 2) & 0 & 0 & \\cos(\\theta / 2) \\\\ \\end{pmatrix} Args: q0 (int): the first qubit to be swapped id number. q1 (int): the second qubit to be swapped id number. phi0 (float): first qubit's phase. phi1 (float): second qubit's phase theta (float, optional): arbitrary angle in the interval :math:`0 \\leq \\theta \\leq \\pi /2`. If :math:`\\theta \\rightarrow \\pi / 2`, the fully-entangling MS gate is defined. Defaults to :math:`\\pi / 2`. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. """ # TODO: Check how this works with QASM. def __init__(self, q0, q1, phi0, phi1, theta: float = math.pi / 2, trainable=True): super().__init__(trainable) self.name = "ms" self.draw_label = "MS" self.target_qubits = (q0, q1) self.unitary = True if theta < 0.0 or theta > math.pi / 2: raise_error( ValueError, f"Theta is defined in the interval 0 <= theta <= pi/2, but it is {theta}.", ) self.parameter_names = ["phi0", "phi1", "theta"] self.parameters = phi0, phi1, theta self.nparams = 3 self.init_args = [q0, q1] self.init_kwargs = { "phi0": phi0, "phi1": phi1, "theta": theta, "trainable": trainable, } @property def qasm_label(self): return "ms" def _dagger(self) -> "Gate": """""" q0, q1 = self.target_qubits phi0, phi1, theta = self.parameters return self.__class__(q0, q1, phi0 + math.pi, phi1, theta)
[docs]class GIVENS(ParametrizedGate): """The Givens gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & \\cos(\\theta) & -\\sin(\\theta) & 0 \\\\ 0 & \\sin(\\theta) & \\cos(\\theta) & 0 \\\\ 0 & 0 & 0 & 1 \\\\ \\end{pmatrix} Args: q0 (int): the first qubit id number. q1 (int): the second qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.AbstractCircuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(trainable) self.name = "g" self.draw_label = "G" self.target_qubits = (q0, q1) self.unitary = True self.parameter_names = "theta" self.parameters = theta self.nparams = 1 self.init_args = [q0, q1] self.init_kwargs = {"theta": theta, "trainable": trainable} def _dagger(self) -> "Gate": """""" return self.__class__(*self.target_qubits, -self.parameters[0])
[docs] def decompose(self, *free, use_toffolis: bool = True) -> List[Gate]: """Decomposition of RBS gate according to `ArXiv:2109.09685 <https://arxiv.org/abs/2109.09685>`_.""" from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self)
[docs]class RBS(ParametrizedGate): """The Reconfigurable Beam Splitter gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & \\cos(\\theta) & \\sin(\\theta) & 0 \\\\ 0 & -\\sin(\\theta) & \\cos(\\theta) & 0 \\\\ 0 & 0 & 0 & 1 \\\\ \\end{pmatrix} Note that, in our implementation, :math:`\\text{RBS}(\\theta) = \\text{Givens}(-\\theta)`, where :math:`\\text{Givens}` is the :class:`qibo.gates.GIVENS` gate. However, we point out that this definition is not unique. Args: q0 (int): the first qubit id number. q1 (int): the second qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.AbstractCircuit.set_parameters`. Defaults to ``True``. """ def __init__(self, q0, q1, theta, trainable=True): super().__init__(trainable) self.name = "rbs" self.draw_label = "RBS" self.target_qubits = (q0, q1) self.unitary = True self.parameter_names = "theta" self.parameters = theta self.nparams = 1 self.init_args = [q0, q1] self.init_kwargs = {"theta": theta, "trainable": trainable} def _dagger(self) -> "Gate": """""" return self.__class__(*self.target_qubits, -self.parameters[0])
[docs] def decompose(self, *free, use_toffolis: bool = True) -> List[Gate]: """Decomposition of RBS gate according to `ArXiv:2109.09685 <https://arxiv.org/abs/2109.09685>`_.""" from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self)
[docs]class ECR(Gate): """THe Echo Cross-Resonance gate. Corresponds ot the following matrix .. math:: \\frac{1}{\\sqrt{2}} \\left( X \\, I - Y \\, X \\right) = \\frac{1}{\\sqrt{2}} \\, \\begin{pmatrix} 0 & 0 & 1 & i \\\\ 0 & 0 & i & 1 \\\\ 1 & -i & 0 & 0 \\\\ -i & 1 & 0 & 0 \\\\ \\end{pmatrix} Args: q0 (int): the first qubit id number. q1 (int): the second qubit id number. """ def __init__(self, q0, q1): super().__init__() self.name = "ecr" self.draw_label = "ECR" self.target_qubits = (q0, q1) self.init_args = [q0, q1] self.unitary = True @property def clifford(self): return True
[docs] def decompose(self, *free, use_toffolis: bool = True) -> List[Gate]: """Decomposition of :math:`\\textup{ECR}` gate up to global phase. A global phase difference exists between the definitions of :math:`\\textup{ECR}` and this decomposition. More precisely, .. math:: \\textup{ECR} = e^{i 7 \\pi / 4} \\, S(q_{0}) \\, \\sqrt{X}(q_{1}) \\, \\textup{CNOT}(q_{0}, q_{1}) \\, X(q_{0}) """ from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self)
[docs]class TOFFOLI(Gate): """The Toffoli gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\\\ \\end{pmatrix} Args: q0 (int): the first control qubit id number. q1 (int): the second control qubit id number. q2 (int): the target qubit id number. """ def __init__(self, q0, q1, q2): super().__init__() self.name = "ccx" self.draw_label = "X" self.control_qubits = (q0, q1) self.target_qubits = (q2,) self.init_args = [q0, q1, q2] self.unitary = True @property def qasm_label(self): return "ccx"
[docs] def decompose(self, *free, use_toffolis: bool = True) -> List[Gate]: c0, c1 = self.control_qubits t = self.target_qubits[0] return [self.__class__(c0, c1, t)]
[docs] def congruent(self, use_toffolis: bool = True) -> List[Gate]: """Congruent representation of ``TOFFOLI`` gate. This is a helper method for the decomposition of multi-control ``X`` gates. The congruent representation is based on Sec. 6.2 of `arXiv:9503016 <https://arxiv.org/abs/quant-ph/9503016>`_. The sequence of the gates produced here has the same effect as ``TOFFOLI`` with the phase of the ``|101>`` state reversed. Args: use_toffolis: If ``True`` a single ``TOFFOLI`` gate is returned. If ``False`` the congruent representation is returned. Returns: List with ``RY`` and ``CNOT`` gates that have the same effect as applying the original ``TOFFOLI`` gate. """ if use_toffolis: return self.decompose() control0, control1 = self.control_qubits target = self.target_qubits[0] return [ RY(target, -math.pi / 4), CNOT(control1, target), RY(target, -math.pi / 4), CNOT(control0, target), RY(target, math.pi / 4), CNOT(control1, target), RY(target, math.pi / 4), ]
[docs]class CCZ(Gate): """The controlled-CZ gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\\\ \\end{pmatrix} Args: q0 (int): the first control qubit id number. q1 (int): the second control qubit id number. q2 (int): the target qubit id number. """ def __init__(self, q0, q1, q2): super().__init__() self.name = "ccz" self.draw_label = "Z" self.control_qubits = (q0, q1) self.target_qubits = (q2,) self.init_args = [q0, q1, q2] self.unitary = True @property def qasm_label(self): return "ccz"
[docs] def decompose(self) -> List[Gate]: """Decomposition of :math:`\\text{CCZ}` gate. Decompose :math:`\\text{CCZ}` gate into :class:`qibo.gates.H` in the target qubit, followed by :class:`qibo.gates.TOFFOLI`, followed by a :class:`qibo.gates.H` in the target qubit. """ from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self)
[docs]class DEUTSCH(ParametrizedGate): """The Deutsch gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\\\ 0 & 0 & 0 & 0 & 0 & 0 & i \\cos{\\theta} & \\sin{\\theta} \\\\ 0 & 0 & 0 & 0 & 0 & 0 & \\sin{\\theta} & i \\cos{\\theta} \\\\ \\end{pmatrix} Args: q0 (int): the first control qubit id number. q1 (int): the second control qubit id number. q2 (int): the target qubit id number. """ def __init__(self, q0, q1, q2, theta, trainable=True): super().__init__(trainable) self.name = "deutsch" self.draw_label = "DE" self.control_qubits = (q0, q1) self.target_qubits = (q2,) self.unitary = True self.parameter_names = "theta" self.parameters = theta self.nparams = 1 self.init_args = [q0, q1, q2] self.init_kwargs = {"theta": theta, "trainable": trainable}
[docs]class GeneralizedRBS(ParametrizedGate): """The generalized (complex) Reconfigurable Beam Splitter gate (:math:`\\text{gRBS}`). Given a register called ``qubits_in`` containing :math:`m` qubits and a register named ``qubits_out`` containing :math:`m'` qubits, the :math:`\\text{gRBS}` is a :math:`(m + m')`-qubit gate that has the following matrix representation: .. math:: \\begin{pmatrix} I & & & & \\\\ & e^{-i\\phi}\\cos\\theta & & e^{-i\\phi}\\sin\\theta & \\\\ & & I' & & \\\\ & -e^{i\\phi}\\sin\\theta & & e^{i\\phi}\\cos\\theta & \\\\ & & & & I\\\\ \\end{pmatrix} \\,\\, , where :math:`I` and :math:`I'` are, respectively, identity matrices of size :math:`2^{m} - 1` and :math:`2^{m}(2^{m'} - 2)`. This unitary matrix is also known as a `Givens rotation <https://en.wikipedia.org/wiki/Givens_rotation>`_. References: 1. R. M. S. Farias, T. O. Maciel, G. Camilo, R. Lin, S. Ramos-Calderer, and L. Aolita, *Quantum encoder for fixed Hamming-weight subspaces*. `arXiv:2405.20408 [quant-ph] <https://arxiv.org/abs/2405.20408>`_ Args: qubits_in (tuple or list): ids of "input" qubits. qubits_out (tuple or list): ids of "output" qubits. theta (float): the rotation angle. phi (float): the phase angle. Defaults to :math:`0.0`. trainable (bool): whether gate parameter can be updated using :meth:`qibo.models.circuit.AbstractCircuit.set_parameters`. Defaults to ``True``. """ def __init__( self, qubits_in: Union[Tuple[int], List[int]], qubits_out: Union[Tuple[int], List[int]], theta: float, phi: float = 0.0, trainable: bool = True, ): super().__init__(trainable) self.name = "grbs" self.draw_label = "gRBS" self.target_qubits = tuple(qubits_in) + tuple(qubits_out) self.unitary = True self.parameter_names = "theta" self.parameters = theta, phi self.nparams = 2 self.init_args = [qubits_in, qubits_out] self.init_kwargs = {"theta": theta, "phi": phi, "trainable": trainable}
[docs] def decompose(self) -> List[Gate]: """Decomposition of :math:`\\text{gRBS}` gate. Decompose :math:`\\text{gRBS}` gate into :class:`qibo.gates.X`, :class:`qibo.gates.CNOT`, :class:`qibo.gates.RY`, and :class:`qibo.gates.RZ`. """ from qibo.transpiler.decompositions import ( # pylint: disable=C0415 standard_decompositions, ) return standard_decompositions(self)
[docs]class Unitary(ParametrizedGate): """Arbitrary unitary gate. Args: unitary: Unitary matrix as a tensor supported by the backend. *q (int): Qubit id numbers that the gate acts on. trainable (bool): whether gate parameters can be updated using :meth:`qibo.models.circuit.Circuit.set_parameters`. Defaults to ``True``. name (str): Optional name for the gate. check_unitary (bool): if ``True``, checks if ``unitary`` is an unitary operator. If ``False``, check is not performed and ``unitary`` attribute defaults to ``False``. Note that, even when the check is performed, there is no enforcement. This allows the user to create non-unitary gates. Default is ``True``. """ def __init__( self, unitary, *q, trainable=True, name: str = None, check_unitary: bool = True ): super().__init__(trainable) self.name = "Unitary" if name is None else name self.draw_label = "U" self.target_qubits = tuple(q) self._clifford = False # TODO: Check that given ``unitary`` has proper shape? self.parameter_names = "u" self._parameters = (unitary,) self.nparams = 4 ** len(self.target_qubits) self.init_args = [unitary] + list(q) self.init_kwargs = { "name": name, "check_unitary": check_unitary, "trainable": trainable, } if check_unitary: engine = _check_engine(unitary) product = engine.transpose(engine.conj(unitary), (1, 0)) @ unitary diagonals = all(engine.abs(1 - engine.diag(product)) < PRECISION_TOL) off_diagonals = bool( engine.all( engine.abs(product - engine.diag(engine.diag(product))) < PRECISION_TOL ) ) self.unitary = True if diagonals and off_diagonals else False del diagonals, off_diagonals, product @Gate.parameters.setter def parameters(self, x): shape = self.parameters[0].shape engine = _check_engine(x) # Reshape doesn't accept a tuple if engine is pytorch. if isinstance(x, tuple): x = x[0] self._parameters = (engine.reshape(x, shape),) for gate in self.device_gates: # pragma: no cover gate.parameters = x @property def clifford(self): return self._clifford @clifford.setter def clifford(self, value): self._clifford = value
[docs] def on_qubits(self, qubit_map): args = [self.init_args[0]] args.extend(qubit_map.get(i) for i in self.target_qubits) gate = self.__class__(*args, **self.init_kwargs) if self.is_controlled_by: controls = (qubit_map.get(i) for i in self.control_qubits) gate = gate.controlled_by(*controls) gate.parameters = self.parameters return gate
def _dagger(self): engine = _check_engine(self.parameters[0]) ud = engine.conj(self.parameters[0].T) return self.__class__(ud, *self.target_qubits, **self.init_kwargs)
def _check_engine(array): """Check if the array is a numpy or torch tensor and return the corresponding library.""" if (array.__class__.__name__ == "Tensor") or ( isinstance(array, tuple) and array[0].__class__.__name__ == "Tensor" ): import torch # pylint: disable=C0415 return torch else: return np