Source code for qibo.derivative

import numpy as np

from qibo.config import raise_error
from qibo.hamiltonians.abstract import AbstractHamiltonian


[docs]def parameter_shift( circuit, hamiltonian, parameter_index, initial_state=None, scale_factor=1, nshots=None, ): """In this method the parameter shift rule (PSR) is implemented. Given a circuit :math:`U` and an observable :math:`H`, the PSR allows to calculate the derivative of the expected value of :math:`H` on the final state with respect to a variational parameter of the circuit. There is also the possibility of setting a scale factor. It is useful when a circuit's parameter is obtained by combination of a variational parameter and an external object, such as a training variable in a Quantum Machine Learning problem. For example, performing a re-uploading strategy to embed some data into a circuit, we apply to the quantum state rotations whose angles are in the form :math:`\\theta^{\\prime} = x \\, \\theta`, where :math:`\\theta` is a variational parameter, and :math:`x` an input variable. The PSR allows to calculate the derivative with respect to :math:`\\theta^{\\prime}`. However, if we want to optimize a system with respect to its variational parameters, we need to "free" this procedure from the :math:`x` depencency. If the ``scale_factor`` is not provided, it is set equal to one and doesn't affect the calculation. If the PSR is needed to be executed on a real quantum device, it is important to set ``nshots`` to some integer value. This enables the execution on the hardware by calling the proper methods. Args: circuit (:class:`qibo.models.circuit.Circuit`): custom quantum circuit. hamiltonian (:class:`qibo.hamiltonians.Hamiltonian`): target observable. if you want to execute on hardware, a symbolic hamiltonian must be provided as follows (example with Pauli-:math:`Z` and :math:`n = 1`): ``SymbolicHamiltonian(np.prod([ Z(i) for i in range(1) ]))``. parameter_index (int): the index which identifies the target parameter in the ``circuit.get_parameters()`` list. initial_state (ndarray, optional): initial state on which the circuit acts. If ``None``, defaults to the zero state :math:`\\ket{\\mathbf{0}}`. Defaults to ``None``. scale_factor (float, optional): parameter scale factor. Defaults to :math:`1`. nshots (int, optional): number of shots if derivative is evaluated on hardware. If ``None``, the simulation mode is executed. Defaults to ``None``. Returns: float: Value of the derivative of the expectation value of the hamiltonian with respect to the target variational parameter. Example: .. testcode:: import qibo import numpy as np from qibo import Circuit, gates, hamiltonians from qibo.derivative import parameter_shift # defining an observable def hamiltonian(nqubits = 1): m0 = (1/nqubits)*hamiltonians.Z(nqubits).matrix ham = hamiltonians.Hamiltonian(nqubits, m0) return ham # defining a dummy circuit def circuit(nqubits = 1): c = Circuit(nqubits = 1) c.add(gates.RY(q = 0, theta = 0)) c.add(gates.RX(q = 0, theta = 0)) c.add(gates.M(0)) return c # initializing the circuit c = circuit(nqubits = 1) # some parameters test_params = np.random.randn(2) c.set_parameters(test_params) test_hamiltonian = hamiltonian() # running the psr with respect to the two parameters grad_0 = parameter_shift(circuit=c, hamiltonian=test_hamiltonian, parameter_index=0) grad_1 = parameter_shift(circuit=c, hamiltonian=test_hamiltonian, parameter_index=1) """ # some raise_error if parameter_index > len(circuit.get_parameters()): raise_error(ValueError, """This index is out of bounds.""") if not isinstance(hamiltonian, AbstractHamiltonian): raise_error( TypeError, "hamiltonian must be a qibo.hamiltonians.Hamiltonian or qibo.hamiltonians.SymbolicHamiltonian object", ) # inheriting hamiltonian's backend backend = hamiltonian.backend # getting the gate's type gate = circuit.associate_gates_with_parameters()[parameter_index] # getting the generator_eigenvalue generator_eigenval = gate.generator_eigenvalue() # defining the shift according to the psr s = np.pi / (4 * generator_eigenval) # saving original parameters and making a copy original = np.asarray(circuit.get_parameters()).copy() shifted = original.copy() # forward shift shifted[parameter_index] += s circuit.set_parameters(shifted) if nshots is None: # forward evaluation forward = hamiltonian.expectation( backend.execute_circuit( circuit=circuit, initial_state=initial_state ).state() ) # backward shift and evaluation shifted[parameter_index] -= 2 * s circuit.set_parameters(shifted) backward = hamiltonian.expectation( backend.execute_circuit( circuit=circuit, initial_state=initial_state ).state() ) # same but using expectation from samples else: forward = backend.execute_circuit( circuit=circuit, initial_state=initial_state, nshots=nshots ).expectation_from_samples(hamiltonian) shifted[parameter_index] -= 2 * s circuit.set_parameters(shifted) backward = backend.execute_circuit( circuit=circuit, initial_state=initial_state, nshots=nshots ).expectation_from_samples(hamiltonian) circuit.set_parameters(original) # float() necessary to not return a 0-dim ndarray result = float(generator_eigenval * (forward - backward) * scale_factor) return result
[docs]def finite_differences( circuit, hamiltonian, parameter_index, initial_state=None, step_size=1e-7, ): """ Calculate derivative of the expectation value of ``hamiltonian`` on the final state obtained by executing ``circuit`` on ``initial_state`` with respect to the variational parameter identified by ``parameter_index`` in the circuit's parameters list. This method can be used only in exact simulation mode. Args: circuit (:class:`qibo.models.circuit.Circuit`): custom quantum circuit. hamiltonian (:class:`qibo.hamiltonians.Hamiltonian`): target observable. To execute on hardware, a symbolic hamiltonian must be provided as follows (example with Pauli-:math:`Z` and :math:`n = 1`): ``SymbolicHamiltonian(np.prod([ Z(i) for i in range(1) ]))``. parameter_index (int): the index which identifies the target parameter in the :meth:`qibo.models.Circuit.get_parameters` list. initial_state (ndarray, optional): initial state on which the circuit acts. If ``None``, defaults to the zero state :math:`\\ket{\\mathbf{0}}`. Defaults to ``None``. step_size (float, optional): step size used to evaluate the finite difference. Defaults to :math:`10^{-7}`. Returns: float: Value of the derivative of the expectation value of the hamiltonian with respect to the target variational parameter. """ if parameter_index > len(circuit.get_parameters()): raise_error(ValueError, f"""Index {parameter_index} is out of bounds.""") if not isinstance(hamiltonian, AbstractHamiltonian): raise_error( TypeError, "hamiltonian must be a qibo.hamiltonians.Hamiltonian or qibo.hamiltonians.SymbolicHamiltonian object", ) backend = hamiltonian.backend # parameters copies parameters = np.asarray(circuit.get_parameters()).copy() shifted = parameters.copy() # shift the parameter_index element shifted[parameter_index] += step_size circuit.set_parameters(shifted) # forward evaluation forward = hamiltonian.expectation( backend.execute_circuit(circuit=circuit, initial_state=initial_state).state() ) # backward shift and evaluation shifted[parameter_index] -= 2 * step_size circuit.set_parameters(shifted) backward = hamiltonian.expectation( backend.execute_circuit(circuit=circuit, initial_state=initial_state).state() ) circuit.set_parameters(parameters) result = (forward - backward) / (2 * step_size) return result