from typing import Optional
import numpy as np
from qibolab import Platform
from qibolab.pulses import PulseSequence
from qibolab.qubits import QubitId
from scipy.optimize import curve_fit
from qibocal.protocols.utils import GHZ_TO_HZ, fallback_period, guess_period
POPT_EXCEPTION = [0, 0, 0, 0, 1]
"""Fit parameters output to handle exceptions"""
PERR_EXCEPTION = [1] * 5
"""Fit errors to handle exceptions; their choice has no physical meaning
and is meant to avoid breaking the code."""
THRESHOLD = 0.5
"""Threshold parameters for find_peaks to guess
frequency for sinusoidal fit."""
[docs]def ramsey_sequence(
platform: Platform,
qubit: QubitId,
wait: int = 0,
detuning: Optional[int] = 0,
target_qubit: Optional[QubitId] = None,
):
"""Pulse sequence used in Ramsey (detuned) experiments.
The pulse sequence is the following:
RX90 -- wait -- RX90 -- MZ
If detuning is specified the RX90 pulses will be sent to
frequency = drive_frequency + detuning
"""
sequence = PulseSequence()
first_pi_half_pulse = platform.create_RX90_pulse(qubit, start=0)
second_pi_half_pulse = platform.create_RX90_pulse(
qubit, start=first_pi_half_pulse.finish + wait
)
# apply detuning:
if detuning is not None:
first_pi_half_pulse.frequency += detuning
second_pi_half_pulse.frequency += detuning
readout_pulse = platform.create_qubit_readout_pulse(
qubit, start=second_pi_half_pulse.finish
)
sequence.add(first_pi_half_pulse, second_pi_half_pulse, readout_pulse)
if target_qubit is not None:
x_pulse_target_qubit = platform.create_RX_pulse(target_qubit, start=0)
sequence.add(x_pulse_target_qubit)
return sequence
[docs]def ramsey_fit(x, offset, amplitude, delta, phase, decay):
"""Dumped sinusoidal fit."""
return offset + amplitude * np.sin(x * delta + phase) * np.exp(-x * decay)
[docs]def fitting(x: list, y: list, errors: list = None) -> list:
"""
Given the inputs list `x` and outputs one `y`, this function fits the
`ramsey_fit` function and returns a list with the fit parameters.
"""
y_max = np.max(y)
y_min = np.min(y)
x_max = np.max(x)
x_min = np.min(x)
delta_y = y_max - y_min
delta_x = x_max - x_min
y = (y - y_min) / delta_y
x = (x - x_min) / delta_x
err = errors / delta_y if errors is not None else None
period = fallback_period(guess_period(x, y))
omega = 2 * np.pi / period
p0 = [
0.5,
0.5,
omega,
0,
1,
]
popt, perr = curve_fit(
ramsey_fit,
x,
y,
p0=p0,
maxfev=5000,
bounds=(
[0, 0, 0, -np.pi, 0],
[1, 1, np.inf, np.pi, np.inf],
),
sigma=err,
)
popt = [
delta_y * popt[0] + y_min,
delta_y * popt[1] * np.exp(x_min * popt[4] / delta_x),
popt[2] / delta_x,
popt[3] - x_min * popt[2] / delta_x,
popt[4] / delta_x,
]
perr = np.sqrt(np.diag(perr))
perr = [
delta_y * perr[0],
delta_y
* np.exp(x_min * popt[4] / delta_x)
* np.sqrt(perr[1] ** 2 + (popt[1] * x_min * perr[4] / delta_x) ** 2),
perr[2] / delta_x,
np.sqrt(perr[3] ** 2 + (perr[2] * x_min / delta_x) ** 2),
perr[4] / delta_x,
]
return popt, perr
[docs]def process_fit(
popt: list[float], perr: list[float], qubit_frequency: float, detuning: float
):
"""Processing Ramsey fitting results."""
delta_fitting = popt[2] / (2 * np.pi)
if detuning is not None:
sign = np.sign(detuning)
delta_phys = int(sign * (delta_fitting * GHZ_TO_HZ - np.abs(detuning)))
else:
delta_phys = int(delta_fitting * GHZ_TO_HZ)
corrected_qubit_frequency = int(qubit_frequency - delta_phys)
t2 = 1 / popt[4]
new_frequency = [
corrected_qubit_frequency,
perr[2] * GHZ_TO_HZ / (2 * np.pi),
]
t2 = [t2, perr[4] * (t2**2)]
delta_phys_measure = [
-delta_phys,
perr[2] * GHZ_TO_HZ / (2 * np.pi),
]
delta_fitting_measure = [
-delta_fitting * GHZ_TO_HZ,
perr[2] * GHZ_TO_HZ / (2 * np.pi),
]
return new_frequency, t2, delta_phys_measure, delta_fitting_measure, popt