qibocal.protocols.two_qubit_interaction package¶
Subpackages¶
- qibocal.protocols.two_qubit_interaction.chevron package
- qibocal.protocols.two_qubit_interaction.chsh package
- Submodules
- qibocal.protocols.two_qubit_interaction.chsh.circuits module
- qibocal.protocols.two_qubit_interaction.chsh.protocol module
CLASSICAL_BOUND
QUANTUM_BOUND
CHSHParameters
merge_frequencies()
mitigated_frequencies()
CHSHData
CHSHData.bell_states
CHSHData.thetas
CHSHData.data
CHSHData.frequencies
CHSHData.mitigated_frequencies
CHSHData.register_basis()
CHSHData._to_json()
CHSHData._to_npz()
CHSHData.load_data()
CHSHData.load_params()
CHSHData.pairs
CHSHData.params
CHSHData.qubits
CHSHData.register_qubit()
CHSHData.save()
CHSHResults
_acquisition()
_plot()
_fit()
chsh
- qibocal.protocols.two_qubit_interaction.chsh.utils module
Submodules¶
qibocal.protocols.two_qubit_interaction.optimize module¶
virtual correction experiment for two qubit gates, tune landscape.
- qibocal.protocols.two_qubit_interaction.optimize.optimize_two_qubit_gate = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>, update=<function _update>, two_qubit_gates=True)¶
Optimize two qubit gate protocol
qibocal.protocols.two_qubit_interaction.snz_optimize module¶
- class qibocal.protocols.two_qubit_interaction.snz_optimize.SNZFinetuningParamteters(amplitude_min: float, amplitude_max: float, amplitude_step: float, amp_ratio_min: float, amp_ratio_max: float, amp_ratio_step: float, theta_start: float, theta_end: float, theta_step: float, t_idling: float, flux_time_delay: float = 0)[source]¶
Bases:
Parameters
- class qibocal.protocols.two_qubit_interaction.snz_optimize.SNZFinetuningResults(leakages: dict, virtual_phases: dict, fitted_parameters: dict, angles: dict)[source]¶
Bases:
Results
- property pairs¶
- class qibocal.protocols.two_qubit_interaction.snz_optimize.SNZFinetuningData(data: dict[tuple, numpy.ndarray[tuple[int, ...], numpy.dtype[dtype([('theta', '<f8'), ('target', '<f8'), ('control', '<f8')])]]] = <factory>, amplitudes: list[float] = <factory>, rel_amplitudes: list[float] = <factory>, angles: list = <factory>)[source]¶
Bases:
Data
- _to_npz(path: Path, filename: str)¶
Helper function to use np.savez while converting keys into strings.
- property pairs¶
Access qubit pairs ordered alphanumerically from data structure.
- property qubits¶
Access qubits from data structure.
- data: dict[tuple, ndarray[tuple[int, ...], dtype[dtype(['theta', '<f8', 'target', '<f8', 'control', '<f8'])]]]¶
Raw data.
- property order_pairs¶
- property swept_virtual_phases¶
List of swept phases.
- qibocal.protocols.two_qubit_interaction.snz_optimize._aquisition(params: ~qibocal.protocols.two_qubit_interaction.snz_optimize.SNZFinetuningParamteters, platform: ~qibocal.calibration.platform.CalibrationPlatform, targets: list[~typing.Annotated[tuple[~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], ~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]], ~pydantic.functional_validators.BeforeValidator(func=~qibocal.calibration.calibration.<lambda>, json_schema_input_type=PydanticUndefined), ~pydantic.functional_serializers.PlainSerializer(func=~qibocal.calibration.calibration.<lambda>, return_type=PydanticUndefined, when_used=always)]]) SNZFinetuningData [source]¶
Acquisition for the optimization of SNZ amplitudes. The amplitude of the SNZ pulse and its amplitude ratio (B/A) are swept while the virtual phase correction experiment is performed.
- qibocal.protocols.two_qubit_interaction.snz_optimize._fit(data: SNZFinetuningData) SNZFinetuningResults [source]¶
Repetition of correct virtual phase fit for all configurations.
- qibocal.protocols.two_qubit_interaction.snz_optimize._plot(data: ~qibocal.protocols.two_qubit_interaction.snz_optimize.SNZFinetuningData, fit: ~qibocal.protocols.two_qubit_interaction.snz_optimize.SNZFinetuningResults, target: ~typing.Annotated[tuple[~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], ~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]], ~pydantic.functional_validators.BeforeValidator(func=~qibocal.calibration.calibration.<lambda>, json_schema_input_type=PydanticUndefined), ~pydantic.functional_serializers.PlainSerializer(func=~qibocal.calibration.calibration.<lambda>, return_type=PydanticUndefined, when_used=always)])[source]¶
Plot routine for SNZ optimization.
qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle module¶
- class qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle.SNZIdlingParameters(amplitude_min: float, amplitude_max: float, amplitude_step: float, t_idle_min: float, t_idle_max: float, t_idle_step: float, theta_start: float, theta_end: float, theta_step: float, b_amplitude: float)[source]¶
Bases:
Parameters
- class qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle.SNZIdlingResults(leakages: dict, virtual_phases: dict, fitted_parameters: dict, angles: dict)[source]¶
Bases:
SNZFinetuningResults
- _to_npz(path: Path, filename: str)¶
Helper function to use np.savez while converting keys into strings.
- property pairs¶
- class qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle.SNZIdlingData(data: dict[tuple, numpy.ndarray[tuple[int, ...], numpy.dtype[dtype([('theta', '<f8'), ('target', '<f8'), ('control', '<f8')])]]] = <factory>, amplitudes: list[float] = <factory>, rel_amplitudes: list[float] = <factory>, angles: list = <factory>, t_idles: list[float] = <factory>)[source]¶
Bases:
SNZFinetuningData
- _to_npz(path: Path, filename: str)¶
Helper function to use np.savez while converting keys into strings.
- filter_data_key(target, control, rel_amplitude, amplitude)¶
- property order_pairs¶
- property pairs¶
Access qubit pairs ordered alphanumerically from data structure.
- property qubits¶
Access qubits from data structure.
- property swept_virtual_phases¶
List of swept phases.
- qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle._aquisition(params: ~qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle.SNZIdlingParameters, platform: ~qibocal.calibration.platform.CalibrationPlatform, targets: list[~typing.Annotated[tuple[~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], ~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]], ~pydantic.functional_validators.BeforeValidator(func=~qibocal.calibration.calibration.<lambda>, json_schema_input_type=PydanticUndefined), ~pydantic.functional_serializers.PlainSerializer(func=~qibocal.calibration.calibration.<lambda>, return_type=PydanticUndefined, when_used=always)]]) SNZIdlingData [source]¶
Acquisition for the optimization of SNZ amplitudes. The amplitude of the SNZ pulse and its idling time are swept while the virtual phase correction experiment is performed.
- qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle._fit(data: SNZIdlingData) SNZIdlingResults [source]¶
Repetition of correct virtual phase fit for all configurations.
- qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle._plot(data: ~qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle.SNZIdlingData, fit: ~qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle.SNZIdlingResults, target: ~typing.Annotated[tuple[~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], ~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]], ~pydantic.functional_validators.BeforeValidator(func=~qibocal.calibration.calibration.<lambda>, json_schema_input_type=PydanticUndefined), ~pydantic.functional_serializers.PlainSerializer(func=~qibocal.calibration.calibration.<lambda>, return_type=PydanticUndefined, when_used=always)])[source]¶
Plot routine for OptimizeTwoQubitGate.
qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle_vs_t_tot module¶
- class qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle_vs_t_tot.SNZDurationParamteters(duration_min: float, duration_max: float, duration_step: float, t_idle_min: float, t_idle_max: float, t_idle_step: float, theta_start: float, theta_end: float, theta_step: float, b_amplitude: float)[source]¶
Bases:
Parameters
- class qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle_vs_t_tot.SNZDurationResults(leakages: dict, virtual_phases: dict, fitted_parameters: dict, angles: dict)[source]¶
Bases:
SNZFinetuningResults
- _to_npz(path: Path, filename: str)¶
Helper function to use np.savez while converting keys into strings.
- property pairs¶
- class qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle_vs_t_tot.SNZDurationData(data: dict[tuple, numpy.ndarray[tuple[int, ...], numpy.dtype[dtype([('theta', '<f8'), ('target', '<f8'), ('control', '<f8')])]]] = <factory>, amplitudes: list[float] = <factory>, rel_amplitudes: list[float] = <factory>, angles: list = <factory>, durations: list = <factory>, t_idles: list[float] = <factory>)[source]¶
Bases:
SNZFinetuningData
- _to_npz(path: Path, filename: str)¶
Helper function to use np.savez while converting keys into strings.
- filter_data_key(target, control, rel_amplitude, amplitude)¶
- property order_pairs¶
- property pairs¶
Access qubit pairs ordered alphanumerically from data structure.
- property qubits¶
Access qubits from data structure.
- property swept_virtual_phases¶
List of swept phases.
- qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle_vs_t_tot._aquisition(params: ~qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle_vs_t_tot.SNZDurationParamteters, platform: ~qibocal.calibration.platform.CalibrationPlatform, targets: list[~typing.Annotated[tuple[~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], ~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]], ~pydantic.functional_validators.BeforeValidator(func=~qibocal.calibration.calibration.<lambda>, json_schema_input_type=PydanticUndefined), ~pydantic.functional_serializers.PlainSerializer(func=~qibocal.calibration.calibration.<lambda>, return_type=PydanticUndefined, when_used=always)]]) SNZDurationData [source]¶
- qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle_vs_t_tot._fit(data: SNZDurationData) SNZDurationResults [source]¶
Repetition of correct virtual phase fit for all configurations.
- qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle_vs_t_tot._plot(data: ~qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle_vs_t_tot.SNZDurationData, fit: ~qibocal.protocols.two_qubit_interaction.snz_optimize_t_idle_vs_t_tot.SNZDurationResults, target: ~typing.Annotated[tuple[~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], ~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]], ~pydantic.functional_validators.BeforeValidator(func=~qibocal.calibration.calibration.<lambda>, json_schema_input_type=PydanticUndefined), ~pydantic.functional_serializers.PlainSerializer(func=~qibocal.calibration.calibration.<lambda>, return_type=PydanticUndefined, when_used=always)])[source]¶
Plot routine for OptimizeTwoQubitGate.
qibocal.protocols.two_qubit_interaction.utils module¶
- qibocal.protocols.two_qubit_interaction.utils.order_pair(pair: ~typing.Annotated[tuple[~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], ~typing.Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]], ~pydantic.functional_validators.BeforeValidator(func=~qibocal.calibration.calibration.<lambda>, json_schema_input_type=PydanticUndefined), ~pydantic.functional_serializers.PlainSerializer(func=~qibocal.calibration.calibration.<lambda>, return_type=PydanticUndefined, when_used=always)], platform: ~qibolab._core.platform.platform.Platform) tuple[Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]] [source]¶
Order a pair of qubits by drive frequency.
- qibocal.protocols.two_qubit_interaction.utils.sinusoid(x, gate_repetition, amplitude, offset, phase)[source]¶
Sinusoidal fit function.
- qibocal.protocols.two_qubit_interaction.utils.fit_flux_amplitude(matrix, amps, times)[source]¶
Estimate amplitude for CZ gate.
Given the pattern of a chevron plot (see for example Fig. 2 here https://arxiv.org/pdf/1907.04818.pdf). This function estimates the CZ amplitude by finding the amplitude which gives the standard deviation, indicating that there are oscillation along the z axis.
- Parameters:
matrix (np.ndarray) – signal matrix
amps (np.ndarray) – amplitudes swept
times (np.ndarray) – duration swept
- Returns:
estimated amplitude index (int): amplitude index delta (float): omega for estimated amplitude
- Return type:
amplitude (float)
- qibocal.protocols.two_qubit_interaction.utils.phase_diff(phase_1, phase_2)[source]¶
Return the phase difference of two sinusoids, normalized in the range [0, 2*pi].
qibocal.protocols.two_qubit_interaction.virtual_z_phases module¶
CZ virtual correction experiment for two qubit gates, tune landscape.
- qibocal.protocols.two_qubit_interaction.virtual_z_phases.correct_virtual_z_phases = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>, update=<function _update>, two_qubit_gates=True)¶
Virtual phases correction protocol.
- qibocal.protocols.two_qubit_interaction.virtual_z_phases.create_sequence(platform: CalibrationPlatform, setup: Literal['I', 'X'], target_qubit: Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], control_qubit: Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], ordered_pair: list[Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], Annotated[int | str, FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]], native: Literal['CZ', 'iSWAP'], dt: float, flux_pulse_max_duration: float = None, gate_repetition: int = 1, flux_pulse: list | None = None) tuple[PulseSequence, Pulse, Pulse, list[Pulse]] [source]¶
Create the pulse sequence for the calibration of two-qubit gate virtual phases.
This function constructs a pulse sequence for a given two-qubit native gate native (CZ or iSWAP) on the specified qubits. The sequence includes: - A preliminary RX90 pulse on the target_qubit. - An optional X pulse on the control_qubit based on the setup type. - A flux pulse implementing the two-qubit native gate. - A delay of duration dt before the final X90 pulse on the target qubit. - Measurement pulses. It is possible to specify the maximum duration for the flux pulses with the flux_pulse_max_duration parameter.
- The function returns:
The full experiment pulse sequence.
The applied flux pulse.
The final VirtualZPhase pulses to be used for phase sweeping.