qibocal.protocols.classification package#
Submodules#
qibocal.protocols.classification.classification module#
- qibocal.protocols.classification.classification.single_shot_classification = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>, update=<function _update>, two_qubit_gates=False)#
Qubit classification routine object.
- class qibocal.protocols.classification.classification.SingleShotClassificationData(nshots: int, savedir: str, qubit_frequencies: dict[typing.Annotated[typing.Union[int, str], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], float] = <factory>, data: dict[typing.Annotated[typing.Union[int, str], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]]] = <factory>, classifiers_list: Optional[list[str]] = <factory>)[source]#
Bases:
Data
- data: dict[typing.Union[int, str], numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]]]#
Raw data acquired.
- state_zero(qubit: Union[int, str]) ndarray[Any, dtype[_ScalarType_co]] [source]#
Get state zero data.
- _to_npz(path: Path, filename: str)#
Helper function to use np.savez while converting keys into strings.
- property pairs#
Access qubit pairs ordered alphanumerically from data structure.
- property qubits#
Access qubits from data structure.
- register_qubit(dtype, data_keys, data_dict)#
Store output for single qubit.
- class qibocal.protocols.classification.classification.SingleShotClassificationParameters(unrolling: bool = False, classifiers_list: ~typing.Optional[list[str]] = <factory>, savedir: ~typing.Optional[str] = ' ')[source]#
Bases:
Parameters
SingleShotClassification runcard inputs.
- qibocal.protocols.classification.classification.ClassificationType = dtype([('i', '<f8'), ('q', '<f8'), ('state', '<i8')])#
Custom dtype for rabi amplitude.
qibocal.protocols.classification.qutrit_classification module#
- qibocal.protocols.classification.qutrit_classification.qutrit_classification = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>, update=<function _dummy_update>, two_qubit_gates=False)#
Qutrit classification Routine object.