import collections
import copy
import sys
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import qibo
from qibo import gates
from qibo.backends import _Global
from qibo.config import raise_error
from qibo.gates.abstract import Gate
from qibo.models._openqasm import QASMParser
NoiseMapType = Union[Tuple[int, int, int], Dict[int, Tuple[int, int, int]]]
class _ParametrizedGates(list):
"""Simple data structure for keeping track of parametrized gates.
Useful for the ``circuit.set_parameters()`` method.
Holds parametrized gates in a list and a set and also keeps track of the
total number of parameters.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.set = set()
self.nparams = 0
def append(self, gate):
super().append(gate)
self.set.add(gate)
self.nparams += gate.nparams
class _Queue(list):
"""List that holds the queue of gates of a circuit.
In addition to the queue, it holds a list of gate moments, where
each gate is placed in the earliest possible position depending for
the qubits it acts.
"""
def __init__(self, nqubits):
super().__init__(self)
self.nqubits = nqubits
def to_fused(self):
"""Transform all gates in queue to :class:`qibo.gates.FusedGate`."""
last_gate = {}
queue = self.__class__(self.nqubits)
for gate in self:
fgate = gates.FusedGate.from_gate(gate)
if isinstance(gate, gates.SpecialGate):
fgate.qubit_set = set(range(self.nqubits))
fgate.init_args = sorted(fgate.qubit_set)
fgate.target_qubits = tuple(fgate.init_args)
for q in fgate.qubits:
if q in last_gate:
neighbor = last_gate.get(q)
fgate.left_neighbors[q] = neighbor
neighbor.right_neighbors[q] = fgate
last_gate[q] = fgate
queue.append(fgate)
return queue
def from_fused(self):
"""Create queue from fused circuit.
Create the fused circuit queue by removing gates that have been
fused to others.
"""
queue = self.__class__(self.nqubits)
for gate in self:
if not gate.marked:
if len(gate.gates) == 1:
# replace ``FusedGate``s that contain only one gate
# by this gate for efficiency
queue.append(gate.gates[0])
else:
queue.append(gate)
elif isinstance(gate.gates[0], (gates.SpecialGate, gates.M)):
# special gates are marked by default so we need
# to add them manually
queue.append(gate.gates[0])
return queue
@property
def nmeasurements(self):
return len(list(filter(lambda gate: isinstance(gate, gates.M), self)))
@property
def moments(self):
moments = [self.nqubits * [None]]
moment_index = self.nqubits * [0]
for gate in self:
qubits = (
gate.qubits
if not isinstance(gate, gates.CallbackGate)
else tuple(range(self.nqubits)) # special gate acting on all qubits
)
# calculate moment index for this gate
idx = max(moment_index[q] for q in qubits)
for q in qubits:
if idx >= len(moments):
# Add a moment
moments.append(len(moments[-1]) * [None])
moments[idx][q] = gate
moment_index[q] = idx + 1
return moments
[docs]class Circuit:
"""Circuit object which holds a list of gates.
This circuit is symbolic and cannot perform calculations.
A specific backend has to be used for performing calculations.
Circuits can be created with a specific number of qubits and wire names.
- Either ``nqubits`` or ``wire_names`` must be provided.
- If only ``nqubits`` is provided, wire names will default to ``[0, 1, ..., nqubits - 1]``.
- If only ``wire_names`` is provided, ``nqubits`` will be set to the length of ``wire_names``.
- ``nqubits`` and ``wire_names`` must be consistent with each other.
Example::
from qibo import Circuit
# Every circuit initialization below is valid
circuit = Circuit(5) # Default wire names are [0, 1, 2, 3, 4]
circuit = Circuit(["A", "B", "C", "D", "E"])
circuit = Circuit(5, wire_names=["A", "B", "C", "D", "E"])
circuit = Circuit(wire_names=["A", "B", "C", "D", "E"])
Args:
nqubits (int | list, optional): Number of qubits in the circuit or a list of wire names.
wire_names (list, optional): List of wire names
init_kwargs (dict): a dictionary with the following keys
- *nqubits*
- *accelerators*
- *density_matrix*
- *wire_names*.
queue (_Queue): List that holds the queue of gates of a circuit.
parametrized_gates (_ParametrizedGates): List of parametric gates.
trainable_gates (_ParametrizedGates): List of trainable gates.
measurements (list): List of non-collapsible measurements.
_final_state : Final result after full simulation of the circuit.
compiled (CompiledExecutor): Circuit executor. Defaults to ``None``.
repeated_execution (bool): If `True`, the circuit would be re-executed when sampling.
Defaults to ``False``.
density_matrix (bool, optional): If `True`, the circuit would evolve density matrices.
If ``False``, defaults to statevector simulation.
Defaults to ``False``.
accelerators (dict, optional): Dictionary that maps device names to the number of times each
device will be used. Defaults to ``None``.
ndevices (int): Total number of devices. Defaults to ``None``.
nglobal (int): Base two logarithm of the number of devices. Defaults to ``None``.
nlocal (int): Total number of available qubits in each device. Defaults to ``None``.
queues (DistributedQueues): Gate queues for each accelerator device.
Defaults to ``None``.
"""
def __init__(
self,
nqubits: Optional[Union[int, list]] = None,
accelerators=None,
density_matrix: bool = False,
wire_names: Optional[list] = None,
):
nqubits, wire_names = _resolve_qubits(nqubits, wire_names)
self.nqubits = nqubits
self.init_kwargs = {
"nqubits": nqubits,
"accelerators": accelerators,
"density_matrix": density_matrix,
"wire_names": wire_names,
}
self.wire_names = wire_names
self.queue = _Queue(nqubits)
# Keep track of parametrized gates for the ``set_parameters`` method
self.parametrized_gates = _ParametrizedGates()
self.trainable_gates = _ParametrizedGates()
self.measurements = [] # list of non-collapsible measurements
self._final_state = None
self.compiled = None
self.has_collapse = False
self.has_unitary_channel = False
self.density_matrix = density_matrix
# for distributed circuits
self.accelerators = accelerators
self.ndevices = None
self.nglobal = None
self.nlocal = None
self.queues = None
if accelerators: # pragma: no cover
if density_matrix:
raise_error(
NotImplementedError,
"Distributed circuit is not implemented for density matrices.",
)
self._distributed_init(nqubits, accelerators)
def _distributed_init(self, nqubits, accelerators): # pragma: no cover
"""Distributed implementation of :class:`qibo.models.circuit.Circuit`.
Uses multiple `accelerator` devices (GPUs) for applying gates to the state vector.
The full state vector is saved in the given `memory device` (usually the CPU)
during the simulation. A gate is applied by splitting the state to pieces
and copying each piece to an accelerator device that is used to perform the
matrix multiplication. An `accelerator` device can be used more than once
resulting to logical devices that are more than the physical accelerators in
the system.
Distributed circuits currently do not support native tensorflow gates,
compilation and callbacks.
Example:
.. code-block:: python
from qibo import Circuit
# The system has two GPUs and we would like to use each GPU twice
# resulting to four total logical accelerators
accelerators = {'/GPU:0': 2, '/GPU:1': 2}
# Define a circuit on 32 qubits to be run in the above GPUs keeping
# the full state vector in the CPU memory.
circuit = Circuit(32, accelerators)
Args:
nqubits (int): Total number of qubits in the circuit.
accelerators (dict): Dictionary that maps device names to the number of
times each device will be used.
The total number of logical devices must be a power of 2.
"""
self.ndevices = sum(accelerators.values())
self.nglobal = float(np.log2(self.ndevices))
if not (self.nglobal.is_integer() and self.nglobal > 0):
raise_error(
ValueError,
"Number of calculation devices should be a power "
+ f"of 2 but is {self.ndevices}.",
)
self.nglobal = int(self.nglobal)
self.nlocal = self.nqubits - self.nglobal
from qibo.models.distcircuit import DistributedQueues
self.queues = DistributedQueues(self)
def __add__(self, circuit):
"""Add circuits.
Args:
circuit: Circuit to be added to the current one.
Returns:
The resulting circuit from the addition.
"""
for k, kwarg1 in self.init_kwargs.items():
kwarg2 = circuit.init_kwargs[k]
if kwarg1 != kwarg2:
raise_error(
ValueError,
"Cannot add circuits with different kwargs. "
+ f"{k} is {kwarg1} for first circuit and {kwarg2} "
+ "for the second.",
)
newcircuit = self.__class__(**self.init_kwargs)
# Add gates from `self` to `newcircuit` (including measurements)
for gate in self.queue:
newcircuit.add(gate)
# Add gates from `circuit` to `newcircuit` (including measurements)
for gate in circuit.queue:
newcircuit.add(gate)
return newcircuit
@property
def wire_names(self):
if self._wire_names is None:
return list(range(self.nqubits))
return self._wire_names
@wire_names.setter
def wire_names(self, wire_names: Optional[list]):
if not isinstance(wire_names, (list, type(None))):
raise_error(
TypeError,
f"``wire_names`` must be type ``list``, but is {type(wire_names)}.",
)
if wire_names is not None:
if len(wire_names) != self.nqubits:
raise_error(
ValueError,
f"Number of wire names must be equal to the number of qubits ({self.nqubits}), "
f"but is {len(wire_names)}.",
)
self._wire_names = wire_names.copy()
else:
self._wire_names = None
self.init_kwargs["wire_names"] = self._wire_names
@property
def repeated_execution(self):
return self.has_collapse or (
self.has_unitary_channel and not self.density_matrix
)
[docs] def on_qubits(self, *qubits):
"""Generator of gates contained in the circuit acting on specified
qubits.
Useful for adding a circuit as a subroutine in a larger circuit.
Args:
qubits (int): Qubit ids that the gates should act.
Example:
.. testcode::
from qibo import Circuit, gates
# create small circuit on 4 qubits
small_circuit = Circuit(4)
small_circuit.add(gates.RX(i, theta=0.1) for i in range(4))
small_circuit.add((gates.CNOT(0, 1), gates.CNOT(2, 3)))
# create large circuit on 8 qubits
large_circuit = Circuit(8)
large_circuit.add(gates.RY(i, theta=0.1) for i in range(8))
# add the small circuit to the even qubits of the large one
large_circuit.add(small_circuit.on_qubits(*range(0, 8, 2)))
"""
if len(qubits) != self.nqubits:
raise_error(
ValueError,
f"Cannot return gates on {len(qubits)} qubits because "
+ f"the circuit contains {self.nqubits} qubits.",
)
if self.accelerators and self.queues.queues: # pragma: no cover
raise_error(
RuntimeError,
"Cannot use distributed circuit as a subroutine after it was executed.",
)
qubit_map = {i: q for i, q in enumerate(qubits)}
for gate in self.queue:
yield gate.on_qubits(qubit_map)
[docs] def light_cone(self, *qubits):
"""Reduces circuit to the qubits relevant for an observable.
Useful for calculating expectation values of local observables without
requiring simulation of large circuits.
Uses the light cone construction described in
`issue #571 <https://github.com/qiboteam/qibo/issues/571>`_.
Args:
qubits (int): Qubit ids that the observable has support on.
Returns:
circuit (:class:`qibo.models.Circuit`): Circuit that contains only
the qubits that are required for calculating expectation
involving the given observable qubits.
qubit_map (dict): Dictionary mapping the qubit ids of the original
circuit to the ids in the new one.
"""
# original qubits that are in the light cone
qubits = set(qubits)
# original gates that are in the light cone
list_of_gates = []
for gate in reversed(self.queue):
gate_qubits = set(gate.qubits)
if gate_qubits & qubits:
# if the gate involves any qubit included in the
# light cone, add all its qubits in the light cone
qubits |= gate_qubits
list_of_gates.append(gate)
# Create a new circuit ignoring gates that are not in the light cone
qubit_map = {q: i for i, q in enumerate(sorted(qubits))}
kwargs = dict(self.init_kwargs)
kwargs["nqubits"] = len(qubits)
kwargs["wire_names"] = [self.wire_names[q] for q in sorted(qubits)]
circuit = self.__class__(**kwargs)
circuit.add(gate.on_qubits(qubit_map) for gate in reversed(list_of_gates))
return circuit, qubit_map
def _shallow_copy(self):
"""Helper method for :meth:`qibo.models.circuit.Circuit.copy` and
:meth:`qibo.core.circuit.Circuit.fuse`."""
new_circuit = self.__class__(**self.init_kwargs)
new_circuit.parametrized_gates = _ParametrizedGates(self.parametrized_gates)
new_circuit.trainable_gates = _ParametrizedGates(self.trainable_gates)
new_circuit.measurements = self.measurements
return new_circuit
[docs] def copy(self, deep: bool = False):
"""Creates a copy of the current ``circuit`` as a new ``Circuit`` model.
Args:
deep (bool): If ``True`` copies of the gate objects will be created
for the new circuit. If ``False``, the same gate objects of
``circuit`` will be used.
Returns:
The copied circuit object.
"""
if deep:
new_circuit = self.__class__(**self.init_kwargs)
for gate in self.queue:
if isinstance(gate, gates.FusedGate): # pragma: no cover
# impractical case
raise_error(
NotImplementedError,
"Cannot create deep copy of fused circuit.",
)
if isinstance(gate, gates.M):
new_circuit.add(gate.__class__(*gate.init_args, **gate.init_kwargs))
else:
new_circuit.add(copy.copy(gate))
else:
if self.accelerators: # pragma: no cover
raise_error(
ValueError,
"Non-deep copy is not allowed for distributed "
"circuits because they modify gate objects.",
)
new_circuit = self.__class__(**self.init_kwargs)
for gate in self.queue:
new_circuit.add(gate)
return new_circuit
[docs] def invert(self):
"""Creates a new ``Circuit`` that is the inverse of the original.
Inversion is obtained by taking the dagger of all gates in reverse order.
If the original circuit contains parametrized gates, dagger will change
their parameters. This action is not persistent, so if the parameters
are updated afterwards, for example using :meth:`qibo.models.circuit.Circuit.set_parameters`,
the action of dagger will be overwritten.
If the original circuit contains measurement gates, these are included
in the inverted circuit.
Returns:
The circuit inverse.
"""
from qibo.gates import ParametrizedGate
skip_measurements = True
measurements = []
new_circuit = self.__class__(**self.init_kwargs)
for gate in self.queue[::-1]:
if isinstance(gate, gates.Channel):
raise_error(
NotImplementedError,
"`invert` method not implemented for circuits that contain noise channels.",
)
elif isinstance(gate, gates.M) and skip_measurements:
measurements.append(gate)
else:
new_gate = gate.dagger()
if isinstance(gate, ParametrizedGate):
new_gate.trainable = gate.trainable
new_circuit.add(new_gate)
skip_measurements = False
new_circuit.add(measurements[::-1])
return new_circuit
def _check_noise_map(self, noise_map: NoiseMapType) -> NoiseMapType:
if isinstance(noise_map, list) and not all(
isinstance(n, (tuple, list)) for n in noise_map
):
raise_error(
TypeError,
f"Type {type(noise_map)} of noise map is not recognized.",
)
elif isinstance(noise_map, dict):
if len(noise_map) != self.nqubits:
raise_error(
ValueError,
f"Noise map has {len(noise_map)} qubits while the circuit has {self.nqubits}.",
)
return noise_map
return {q: noise_map for q in range(self.nqubits)}
[docs] def decompose(self, *free: int):
"""Decomposes circuit's gates to gates supported by OpenQASM.
Args:
free: Ids of free (work) qubits to use for gate decomposition.
Returns:
Circuit that contains only gates that are supported by OpenQASM
and has the same effect as the original circuit.
"""
# FIXME: This method is not completed until the ``decompose`` is
# implemented for all gates not supported by OpenQASM.
decomp_circuit = self.__class__(self.nqubits)
for gate in self.queue:
decomp_circuit.add(gate.decompose(*free))
return decomp_circuit
[docs] def with_pauli_noise(self, noise_map: NoiseMapType):
"""Creates a copy of the circuit with Pauli noise gates after each
gate.
If the original circuit uses state vectors then noise simulation will
be done using sampling and repeated circuit execution.
In order to use density matrices the original circuit should be created
setting the flag ``density_matrix=True``.
For more information we refer to the
:ref:`How to perform noisy simulation? <noisy-example>` example.
Args:
noise_map (dict): list of tuples :math:`(P_{k}, p_{k})`, where
:math:`P_{k}` is a ``str`` representing the :math:`k`-th
:math:`n`-qubit Pauli operator, and :math:`p_{k}` is the
associated probability.
Returns:
Circuit object that contains all the gates of the original circuit
and additional noise channels on all qubits after every gate.
Example:
.. testcode::
from qibo import Circuit, gates
# use density matrices for noise simulation
circuit = Circuit(2, density_matrix=True)
circuit.add([gates.H(0), gates.H(1), gates.CNOT(0, 1)])
noise_map = {
0: list(zip(["X", "Z"], [0.1, 0.2])),
1: list(zip(["Y", "Z"], [0.2, 0.1]))
}
noisy_circuit = circuit.with_pauli_noise(noise_map)
# ``noisy_circuit`` will be equivalent to the following circuit
circuit_2 = Circuit(2, density_matrix=True)
circuit_2.add(gates.H(0))
circuit_2.add(gates.PauliNoiseChannel(0, [("X", 0.1), ("Z", 0.2)]))
circuit_2.add(gates.H(1))
circuit_2.add(gates.PauliNoiseChannel(1, [("Y", 0.2), ("Z", 0.1)]))
circuit_2.add(gates.CNOT(0, 1))
circuit_2.add(gates.PauliNoiseChannel(0, [("X", 0.1), ("Z", 0.2)]))
circuit_2.add(gates.PauliNoiseChannel(1, [("Y", 0.2), ("Z", 0.1)]))
"""
if self.accelerators: # pragma: no cover
raise_error(
NotImplementedError,
"Distributed circuit does not support density matrices yet.",
)
noise_map = self._check_noise_map(noise_map)
# Generate noise gates
noise_gates = []
for gate in self.queue:
if isinstance(gate, gates.KrausChannel):
raise_error(
ValueError,
"`.with_pauli_noise` method is not available "
+ "for circuits that already contain "
+ "channels.",
)
noise_gates.append([])
if not isinstance(gate, gates.M):
for q in gate.qubits:
if q in noise_map and sum([row[1] for row in noise_map[q]]) > 0:
noise_gates[-1].append(gates.PauliNoiseChannel(q, noise_map[q]))
# Create new circuit with noise gates inside
noisy_circuit = self.__class__(**self.init_kwargs)
for i, gate in enumerate(self.queue):
noisy_circuit.add(gate)
for noise_gate in noise_gates[i]:
noisy_circuit.add(noise_gate)
return noisy_circuit
[docs] def add(self, gate):
"""Add a gate to a given queue.
Args:
gate (:class:`qibo.gates.Gate`): the gate object to add.
See :ref:`Gates` for a list of available gates.
`gate` can also be an iterable or generator of gates.
In this case all gates in the iterable will be added in the
circuit.
Returns:
If the circuit contains measurement gates with ``collapse=True``
a ``sympy.Symbol`` that parametrizes the corresponding outcome.
"""
if isinstance(gate, collections.abc.Iterable):
for g in gate:
self.add(g)
else:
if self.accelerators: # pragma: no cover
if isinstance(gate, gates.KrausChannel):
raise_error(
NotImplementedError,
"Distributed circuits do not support channels.",
)
elif self.nqubits - len(
gate.target_qubits
) < self.nglobal and not isinstance(gate, gates.M):
# Check if there is sufficient number of local qubits
raise_error(
ValueError,
"Insufficient qubits to use for global in distributed circuit.",
)
if not isinstance(gate, gates.Gate):
raise_error(TypeError, f"Unknown gate type {type(gate)}.")
if self._final_state is not None:
raise_error(
RuntimeError,
"Cannot add gates to a circuit after it is executed.",
)
for q in gate.target_qubits:
if q >= self.nqubits:
raise_error(
ValueError,
f"Attempting to add gate with target qubits {gate.target_qubits} "
+ f"on a circuit of {self.nqubits} qubits.",
)
if isinstance(gate, gates.M):
# The following loop is useful when two circuits are added together:
# all the gates in the basis of the measure gates should not
# be added to the new circuit, otherwise once the measure gate is added in the circuit
# there will be two of the same.
for base in gate.basis:
if base not in self.queue:
self.add(base)
self.queue.append(gate)
if gate.register_name is None:
# add default register name
nreg = self.queue.nmeasurements - 1
gate.register_name = f"register{nreg}"
else:
name = gate.register_name
for mgate in self.measurements:
if name == mgate.register_name:
raise_error(
KeyError, f"Register {name} already exists in circuit."
)
gate.result.circuit = self
if gate.collapse:
self.has_collapse = True
else:
self.measurements.append(gate)
return gate.result
else:
self.queue.append(gate)
for measurement in list(self.measurements):
if set(measurement.qubits) & set(gate.qubits):
measurement.collapse = True
self.has_collapse = True
self.measurements.remove(measurement)
if isinstance(gate, gates.UnitaryChannel):
self.has_unitary_channel = True
if isinstance(gate, gates.ParametrizedGate):
self.parametrized_gates.append(gate)
if gate.trainable:
self.trainable_gates.append(gate)
@property
def measurement_tuples(self):
# used for testing only
return {m.register_name: m.target_qubits for m in self.measurements}
@property
def ngates(self) -> int:
"""Total number of gates/operations in the circuit."""
return len(self.queue)
@property
def depth(self) -> int:
"""Circuit depth if each gate is placed at the earliest possible
position."""
return len(self.queue.moments)
@property
def gate_types(self) -> collections.Counter:
"""``collections.Counter`` with the number of appearances of each gate type."""
gatecounter = collections.Counter()
for gate in self.queue:
gatecounter[gate.__class__] += 1
return gatecounter
@property
def gate_names(self) -> collections.Counter:
"""``collections.Counter`` with the number of appearances of each gate name."""
gatecounter = collections.Counter()
for gate in self.queue:
gatecounter[gate.name] += 1
return gatecounter
[docs] def gates_of_type(self, gate: Union[str, type]) -> List[Tuple[int, gates.Gate]]:
"""Finds all gate objects of specific type or name.
This method can be affected by how :meth:`qibo.gates.Gate.controlled_by`
behaves with certain gates. To see how :meth:`qibo.gates.Gate.controlled_by`
affects gates, we refer to the documentation of :meth:`qibo.gates.Gate.controlled_by`.
Args:
gate (str or type): The name of a gate or the corresponding gate class.
Returns:
list: gates that are in the circuit and have the same type as ``gate``.
The list contains tuples ``(k, g)`` where ``k`` is the index of the gate
``g`` in the circuit's gate queue.
"""
if isinstance(gate, str):
return [(i, g) for i, g in enumerate(self.queue) if g.name == gate]
if isinstance(gate, type) and issubclass(gate, gates.Gate):
return [(i, g) for i, g in enumerate(self.queue) if isinstance(g, gate)]
raise_error(TypeError, f"Gate identifier {gate} not recognized.")
def _set_parameters_list(self, parameters, n):
"""Helper method for ``set_parameters`` when a list is given.
Also works if ``parameters`` is ``np.ndarray`` or ``tf.Tensor``.
"""
if n == len(self.trainable_gates):
for i, gate in enumerate(self.trainable_gates):
gate.parameters = parameters[i]
elif n == self.trainable_gates.nparams:
parameters = list(parameters)
k = 0
for i, gate in enumerate(self.trainable_gates):
if gate.nparams == 1:
gate.parameters = parameters[i + k]
else:
gate.parameters = parameters[i + k : i + k + gate.nparams]
k += gate.nparams - 1
else:
raise_error(
ValueError,
f"Given list of parameters has length {n} while "
+ f"the circuit contains {len(self.trainable_gates)} parametrized gates.",
)
[docs] def set_parameters(self, parameters):
"""Updates the parameters of the circuit's parametrized gates.
For more information on how to use this method we refer to the
:ref:`How to use parametrized gates?<params-examples>` example.
Args:
parameters: Container holding the new parameter values.
It can have one of the following types:
List with length equal to the number of parametrized gates and
each of its elements compatible with the corresponding gate.
Dictionary with keys that are references to the parametrized
gates and values that correspond to the new parameters for
each gate.
Flat list with length equal to the total number of free
parameters in the circuit.
A backend supported tensor (for example ``np.ndarray`` or
``tf.Tensor``) may also be given instead of a flat list.
Example:
.. testcode::
from qibo import Circuit, gates
# create a circuit with all parameters set to 0.
circuit = Circuit(3)
circuit.add(gates.RX(0, theta=0))
circuit.add(gates.RY(1, theta=0))
circuit.add(gates.CZ(1, 2))
circuit.add(gates.fSim(0, 2, theta=0, phi=0))
circuit.add(gates.H(2))
# set new values to the circuit's parameters using list
params = [0.123, 0.456, (0.789, 0.321)]
circuit.set_parameters(params)
# or using dictionary
params = {
circuit.queue[0]: 0.123,
circuit.queue[1]: 0.456,
circuit.queue[3]: (0.789, 0.321)
}
circuit.set_parameters(params)
# or using flat list (or an equivalent `np.array`/`tf.Tensor`/`torch.Tensor`)
params = [0.123, 0.456, 0.789, 0.321]
circuit.set_parameters(params)
"""
from collections.abc import Iterable
if isinstance(parameters, dict):
diff = set(parameters.keys()) - self.trainable_gates.set
if diff:
raise_error(
KeyError,
f"Dictionary contains gates {diff} which are "
+ "not on the list of parametrized gates of the circuit.",
)
for gate, params in parameters.items():
gate.parameters = params
elif isinstance(parameters, Iterable) and not isinstance(
parameters, (set, str)
):
try:
nparams = int(parameters.shape[0])
except AttributeError:
nparams = len(parameters)
self._set_parameters_list(parameters, nparams)
else:
raise_error(TypeError, f"Invalid type of parameters {type(parameters)}.")
[docs] def get_parameters(
self, format: str = "list", include_not_trainable: bool = False
) -> Union[List, Dict]: # pylint: disable=W0622
"""Returns the parameters of all parametrized gates in the circuit.
Inverse method of :meth:`qibo.models.circuit.Circuit.set_parameters`.
Args:
format (str): How to return the variational parameters.
Available formats are ``'list'``, ``'dict'`` and ``'flatlist'``.
See :meth:`qibo.models.circuit.Circuit.set_parameters`
for more details on each format. Default is ``'list'``.
include_not_trainable (bool): If ``True`` it includes the parameters
of non-trainable parametrized gates in the returned list or
dictionary. Default is ``False``.
"""
if include_not_trainable:
parametrized_gates = self.parametrized_gates
else:
parametrized_gates = self.trainable_gates
if format == "list":
params = [gate.parameters for gate in parametrized_gates]
elif format == "dict":
params = {gate: gate.parameters for gate in parametrized_gates}
elif format == "flatlist":
params = []
for gate in parametrized_gates:
gparams = gate.parameters
if len(gparams) == 1:
gparams = gparams[0]
if isinstance(gparams, np.ndarray):
def traverse(x):
if isinstance(x, np.ndarray):
for v1 in x:
yield from traverse(v1)
else:
yield x
params.extend(traverse(gparams))
elif isinstance(gparams, collections.abc.Iterable):
params.extend(gparams)
else:
params.append(gparams)
else:
raise_error(
ValueError,
f"Unknown format {format} given in ``get_parameters``.",
)
return params
[docs] def associate_gates_with_parameters(self):
"""Associates to each parameter its gate.
Returns:
A nparams-long flatlist whose i-th element is the gate parameterized
by the i-th parameter.
"""
parameter_to_gate = []
for gate in self.parametrized_gates:
npar = len(gate.parameters)
parameter_to_gate.extend([gate] * npar)
return parameter_to_gate
[docs] def summary(self) -> str:
"""Generates a summary of the circuit.
The summary contains the circuit depths, total number of qubits and
the all gates sorted in decreasing number of appearance.
Example:
.. testcode::
from qibo import Circuit, gates
circuit = Circuit(3)
circuit.add(gates.H(0))
circuit.add(gates.H(1))
circuit.add(gates.CNOT(0, 2))
circuit.add(gates.CNOT(1, 2))
circuit.add(gates.H(2))
circuit.add(gates.TOFFOLI(0, 1, 2))
print(circuit.summary())
# Prints
'''
Circuit depth = 5
Total number of gates = 6
Number of qubits = 3
Most common gates:
h: 3
cx: 2
ccx: 1
'''
.. testoutput::
:hide:
Circuit depth = 5
Total number of gates = 6
Number of qubits = 3
Most common gates:
h: 3
cx: 2
ccx: 1
"""
logs = [
f"Circuit depth = {self.depth}",
f"Total number of gates = {self.ngates}",
f"Number of qubits = {self.nqubits}",
"Most common gates:",
]
common_gates = self.gate_names.most_common()
logs.extend(f"{g}: {n}" for g, n in common_gates)
return "\n".join(logs)
[docs] def fuse(self, max_qubits=2):
"""Creates an equivalent circuit by fusing gates for increased
simulation performance.
Args:
max_qubits (int): Maximum number of qubits in the fused gates.
Returns:
A :class:`qibo.core.circuit.Circuit` object containing
:class:`qibo.gates.FusedGate` gates, each of which
corresponds to a group of some original gates.
For more details on the fusion algorithm we refer to the
:ref:`Circuit fusion <circuit-fusion>` section.
Example:
.. testcode::
from qibo import Circuit, gates
circuit = Circuit(2)
circuit.add([gates.H(0), gates.H(1)])
circuit.add(gates.CNOT(0, 1))
circuit.add([gates.Y(0), gates.Y(1)])
# create circuit with fused gates
fused_circuit = circuit.fuse()
# now ``fused_circuit`` contains a single ``FusedGate`` that is
# equivalent to applying the five original gates
"""
if self.accelerators: # pragma: no cover
raise_error(
NotImplementedError,
"Fusion is not implemented for distributed circuits.",
)
queue = self.queue.to_fused()
for gate in queue:
if not gate.marked:
for q in gate.qubits:
# fuse nearest neighbors forth in time
neighbor = gate.right_neighbors.get(q)
if gate.can_fuse(neighbor, max_qubits):
gate.fuse(neighbor)
# fuse nearest neighbors back in time
neighbor = gate.left_neighbors.get(q)
if gate.can_fuse(neighbor, max_qubits):
neighbor.fuse(gate)
# create a circuit and assign the new queue
circuit = self._shallow_copy()
circuit.queue = queue.from_fused()
return circuit
[docs] def unitary(self, backend=None):
"""Creates the unitary matrix corresponding to all circuit gates.
This is a :math:`2^{n} \\times 2^{n}`` matrix obtained by
multiplying all circuit gates, where :math:`n` is ``nqubits``.
"""
from qibo.backends import _check_backend
backend = _check_backend(backend)
fgate = gates.FusedGate(*range(self.nqubits))
for gate in self.queue:
if isinstance(gate, gates.Channel):
raise_error(
NotImplementedError,
"`unitary` method not implemented for circuits that contain noise channels.",
)
elif not isinstance(gate, (gates.SpecialGate, gates.M)):
fgate.append(gate)
return fgate.matrix(backend)
@property
def final_state(self):
"""Returns the final state after full simulation of the circuit.
If the circuit is executed more than once, only the last final
state is returned.
"""
if self._final_state is None:
raise_error(
RuntimeError,
"Cannot access final state before the circuit is executed.",
)
return self._final_state
def compile(self, backend=None):
if self.accelerators: # pragma: no cover
raise_error(
RuntimeError, "Cannot compile circuit that uses custom operators."
)
if self.compiled:
raise_error(RuntimeError, "Circuit is already compiled.")
if not self.queue:
raise_error(RuntimeError, "Cannot compile circuit without gates.")
for gate in self.queue:
if isinstance(gate, gates.CallbackGate): # pragma: no cover
raise_error(
NotImplementedError,
"Circuit compilation is not available with callbacks.",
)
from qibo.backends import _check_backend
backend = _check_backend(backend)
from qibo.result import CircuitResult, QuantumState
executor = lambda state, nshots: backend.execute_circuit(
self, state, nshots
).state()
self.compiled = type("CompiledExecutor", (), {})()
self.compiled.executor = backend.compile(executor)
if self.measurements:
self.compiled.result = lambda state, nshots: CircuitResult(
state, self.measurements, backend, nshots=nshots
)
else:
self.compiled.result = lambda state, nshots: QuantumState(state, backend)
[docs] def execute(self, initial_state=None, nshots=1000):
"""Executes the circuit. Exact implementation depends on the backend.
Args:
initial_state (`np.ndarray` or :class:`qibo.models.circuit.Circuit`):
Initial configuration. It can be specified by the setting the state
vector using an array or a circuit. If ``None``, the initial state
is ``|000..00>``.
nshots (int): Number of shots.
Returns:
either a ``qibo.result.QuantumState``, ``qibo.result.MeasurementOutcomes``
or ``qibo.result.CircuitResult`` depending on the circuit's configuration.
"""
if self.compiled:
# pylint: disable=E1101
state = self.compiled.executor(initial_state, nshots)
self._final_state = self.compiled.result(state, nshots)
return self._final_state
backend = _Global.backend()
transpiler = _Global.transpiler()
transpiled_circuit, _ = transpiler(self) # pylint: disable=E1102
if self.accelerators: # pragma: no cover
return backend.execute_distributed_circuit(
transpiled_circuit, initial_state, nshots
)
return backend.execute_circuit(transpiled_circuit, initial_state, nshots)
def __call__(self, initial_state=None, nshots=1000):
"""Equivalent to ``circuit.execute``."""
return self.execute(initial_state=initial_state, nshots=nshots)
@property
def raw(self) -> dict:
"""Serialize to dictionary.
This is a thin wrapper over :meth:`Gate.raw`.
"""
return {
"queue": [gate.raw for gate in self.queue],
"nqubits": self.nqubits,
"density_matrix": self.density_matrix,
"qibo_version": qibo.__version__,
}
[docs] @classmethod
def from_dict(cls, raw):
"""Load from serialization.
Essentially the counter-part of :meth:`raw`.
"""
circ = cls(raw["nqubits"], density_matrix=raw["density_matrix"])
for gate in raw["queue"]:
circ.add(Gate.from_dict(gate))
return circ
[docs] def to_qasm(self):
"""Convert circuit to QASM.
.. note::
This method does not support multi-controlled gates and gates with ``torch.Tensor`` as parameters.
Args:
filename (str): The filename where the code is saved.
"""
from qibo import __version__
code = [f"// Generated by QIBO {__version__}"]
code += ["OPENQASM 2.0;"]
code += ['include "qelib1.inc";']
code += [f"qreg q[{self.nqubits}];"]
# Set measurements
for register, qubits in self.measurement_tuples.items():
if not register.islower():
raise_error(
NameError,
"OpenQASM does not support capital letters in "
+ f"register names but {register} was used",
)
code.append(f"creg {register}[{len(qubits)}];")
# Add gates
for gate in self.queue:
if isinstance(gate, gates.M):
continue
if gate.is_controlled_by:
raise_error(
ValueError, "OpenQASM does not support multi-controlled gates."
)
qubits = ",".join(f"q[{i}]" for i in gate.qubits)
if isinstance(gate, gates.ParametrizedGate):
params = (str(float(x)) for x in gate.parameters)
name = f"{gate.qasm_label}({', '.join(params)})"
else:
name = gate.qasm_label
code.append(f"{name} {qubits};")
# Add measurements
for register, qubits in self.measurement_tuples.items():
for i, q in enumerate(qubits):
code.append(f"measure q[{q}] -> {register}[{i}];")
return "\n".join(code)
[docs] @classmethod
def from_qasm(cls, qasm_code, accelerators=None, density_matrix=False):
"""Constructs a circuit from QASM code.
Args:
qasm_code (str): String with the QASM script.
Returns:
A :class:`qibo.models.circuit.Circuit` that contains the gates
specified by the given QASM script.
Example:
.. testcode::
from qibo import Circuit, gates
qasm_code = '''OPENQASM 2.0;
include "qelib1.inc";
qreg q[2];
h q[0];
h q[1];
cx q[0],q[1];'''
circuit = Circuit.from_qasm(qasm_code)
# is equivalent to creating the following circuit
circuit_2 = Circuit(2)
circuit_2.add(gates.H(0))
circuit_2.add(gates.H(1))
circuit_2.add(gates.CNOT(0, 1))
"""
parser = QASMParser()
return parser.to_circuit(qasm_code, accelerators, density_matrix)
def _update_draw_matrix(self, matrix, idx, gate, gate_symbol=None):
"""Helper method for :meth:`qibo.models.circuit.Circuit.draw`."""
if gate_symbol is None:
if gate.draw_label:
gate_symbol = gate.draw_label
elif gate.name:
gate_symbol = gate.name[:4]
else:
raise_error(
NotImplementedError,
f"{gate.__class__.__name__} gate is not supported by `circuit.draw`",
)
if isinstance(gate, gates.CallbackGate):
targets = list(range(self.nqubits))
else:
targets = list(gate.target_qubits)
controls = list(gate.control_qubits)
# identify boundaries
qubits = targets + controls
qubits.sort()
min_qubits_id = qubits[0]
max_qubits_id = qubits[-1]
# identify column
col = idx[targets[0]] if not controls and len(targets) == 1 else max(idx)
# extend matrix
for iq in range(self.nqubits):
matrix[iq].extend((1 + col - len(matrix[iq])) * [""])
# fill
for iq in range(min_qubits_id, max_qubits_id + 1):
if iq in targets:
matrix[iq][col] = gate_symbol
elif iq in controls:
matrix[iq][col] = "o"
else:
matrix[iq][col] = "|"
# update indexes
if not controls and len(targets) == 1:
idx[targets[0]] += 1
else:
idx = [col + 1] * self.nqubits
return matrix, idx
[docs] def diagram(self, line_wrap: int = 70, legend: bool = False) -> str:
"""Build the string representation of the circuit diagram."""
# build string representation of gates
matrix = [[] for _ in range(self.nqubits)]
wire_names = [str(name) for name in self.wire_names]
idx = [0] * self.nqubits
for gate in self.queue:
if isinstance(gate, gates.FusedGate):
# start fused gate
matrix, idx = self._update_draw_matrix(matrix, idx, gate, "[")
# draw gates contained in the fused gate
for subgate in gate.gates:
matrix, idx = self._update_draw_matrix(matrix, idx, subgate)
# end fused gate
matrix, idx = self._update_draw_matrix(matrix, idx, gate, "]")
else:
matrix, idx = self._update_draw_matrix(matrix, idx, gate)
# Add some spacers
for col in range(len(matrix[0])):
maxlen = max(len(matrix[l][col]) for l in range(self.nqubits))
for row in range(self.nqubits):
matrix[row][col] += "─" * (1 + maxlen - len(matrix[row][col]))
# Print to terminal
max_name_len = max(len(name) for name in wire_names)
output = ""
for q in range(self.nqubits):
output += (
wire_names[q]
+ " " * (max_name_len - len(wire_names[q]))
+ ": ─"
+ "".join(matrix[q])
+ "\n"
)
# legend
if legend:
from tabulate import tabulate
legend_rows = {
(i.name, i.draw_label)
for i in self.queue
if isinstance(i, (gates.SpecialGate, gates.Channel))
}
table = tabulate(
[list(l) for l in sorted(legend_rows)],
headers=["Gate", "Symbol"],
tablefmt="orgtbl",
)
table = "\n Legend for callbacks and channels: \n" + table
# line wrap
if line_wrap:
loutput = output.splitlines()
def chunkstring(string, length):
nchunks = range(0, len(string), length)
return (string[i : length + i] for i in nchunks), len(nchunks)
for row in range(self.nqubits):
chunks, nchunks = chunkstring(
loutput[row][3 + max_name_len - 1 :], line_wrap
)
if nchunks == 1:
loutput = None
break
for i, c in enumerate(chunks):
loutput += ["" for _ in range(self.nqubits)]
suffix = " ...\n"
prefix = (
wire_names[row]
+ " " * (max_name_len - len(wire_names[row]))
+ ": "
)
if i == 0:
prefix += " " * 4
elif row == 0:
prefix = "\n" + prefix + "... "
else:
prefix += "... "
if i == nchunks - 1:
suffix = "\n"
loutput[row + i * self.nqubits] = prefix + c + suffix
if loutput is not None:
output = "".join(loutput)
if legend:
output += table
return output.rstrip("\n")
def __str__(self):
return self.diagram()
[docs] def draw(self, line_wrap: int = 70, legend: bool = False):
"""Draw text circuit using unicode symbols.
Args:
line_wrap (int, optional): maximum number of characters per line. This option
split the circuit text diagram in chunks of line_wrap characters.
Defaults to :math:`70`.
legend (bool, optional): If ``True`` prints a legend below the circuit for
callbacks and channels. Defaults to ``False``.
Returns:
String containing text circuit diagram.
"""
sys.stdout.write(self.diagram(line_wrap, legend) + "\n")
def _resolve_qubits(qubits, wire_names):
"""Parse the input arguments for defining a circuit. Allows the user to initialize the circuit as follows:
Example:
.. code-block:: python
from qibo import Circuit
c = Circuit(3)
c = Circuit(3, wire_names=["q0", "q1", "q2"])
c = Circuit(["q0", "q1", "q2"])
c = Circuit(wire_names=["q0", "q1", "q2"])
"""
if qubits is None and wire_names is not None:
return len(wire_names), wire_names
if qubits is not None and wire_names is None:
if isinstance(qubits, int) and qubits > 0:
return qubits, None
if isinstance(qubits, list):
return len(qubits), qubits
if qubits is not None and wire_names is not None:
if isinstance(qubits, int) and isinstance(wire_names, list):
if qubits == len(wire_names):
return qubits, wire_names
raise_error(
ValueError,
"Invalid input arguments for defining a circuit.",
)