Source code for qibolab._core.sweeper

from enum import Enum, auto
from functools import cache, cached_property
from typing import Any, Collection, Optional

import numpy as np
import numpy.typing as npt
from pydantic import model_validator

from .identifier import ChannelId
from .pulses import PulseLike, VirtualZ
from .serialize import Model

__all__ = ["Parameter", "ParallelSweepers", "Sweeper"]

_PULSE = "pulse"
_CHANNEL = "channel"


[docs] class Parameter(Enum): """Sweeping parameters.""" frequency = (auto(), _CHANNEL) amplitude = (auto(), _PULSE) duration = (auto(), _PULSE) duration_interpolated = (auto(), _PULSE) relative_phase = (auto(), _PULSE) phase = (auto(), _PULSE) offset = (auto(), _CHANNEL)
[docs] @classmethod @cache def channels(cls) -> set["Parameter"]: """Set of parameters to be swept on the channel.""" return {p for p in cls if p.value[1] == _CHANNEL}
_Field = tuple[Any, str] def _alternative_fields(a: _Field, b: _Field): if (a[0] is None) == (b[0] is None): raise ValueError( f"Either '{a[1]}' or '{b[1]}' needs to be provided, and only one of them." ) Range = tuple[float, float, float]
[docs] class Sweeper(Model): """Data structure for Sweeper object. This object is passed as an argument to the method :func:`qibolab.Platform.execute` which enables the user to sweep a specific parameter for one or more pulses. For information on how to perform sweeps see :func:`qibolab.Platform.execute`. Example: .. testcode:: import numpy as np from qibolab import Parameter, PulseSequence, Sweeper, create_dummy platform = create_dummy() qubit = platform.qubits[0] natives = platform.natives.single_qubit[0] sequence = natives.MZ.create_sequence() parameter_range = np.random.randint(10, size=10) sweeper = Sweeper( parameter=Parameter.frequency, values=parameter_range, channels=[qubit.probe] ) platform.execute([sequence], [[sweeper]]) """ parameter: Parameter """Parameter to be swept.""" values: Optional[npt.NDArray] = None """Array of parameter values to sweep over.""" range: Optional[Range] = None """Tuple of ``(start, stop, step)``. To sweep over the array ``np.arange(start, stop, step)``. Can be provided instead of ``values`` for more efficient sweeps on some instruments. """ pulses: Optional[list[PulseLike]] = None """List of `qibolab.Pulse` to be swept.""" channels: Optional[list[ChannelId]] = None """List of channel names for which the parameter should be swept."""
[docs] @model_validator(mode="after") def check_values(self): _alternative_fields((self.pulses, "pulses"), (self.channels, "channels")) _alternative_fields((self.range, "range"), (self.values, "values")) if self.pulses is not None and self.parameter in Parameter.channels(): raise ValueError( f"Cannot create a sweeper for {self.parameter} without specifying channels." ) if self.parameter not in Parameter.channels() and (self.channels is not None): raise ValueError( f"Cannot create a sweeper for {self.parameter} without specifying pulses." ) if self.parameter is Parameter.phase and not all( isinstance(pulse, VirtualZ) for pulse in self.pulses ): raise TypeError("Cannot create a phase sweeper on non-VirtualZ pulses.") if self.range is not None: object.__setattr__(self, "values", np.arange(*self.range)) if self.parameter is Parameter.amplitude and max(abs(self.values)) > 1: raise ValueError( "Amplitude sweeper cannot have absolute values larger than 1." ) return self
@cached_property def irange(self) -> tuple[float, float, float]: """Inferred range. Always ensure a range, inferring it from :attr:`values` if :attr:`range` is not set. """ if self.range is not None: return self.range assert self.values is not None return (self.values[0], self.values[-1], self.values[1] - self.values[0]) def __len__(self) -> int: """Compute number of iterations.""" if self.values is not None: return len(self.values) assert self.range is not None return int((self.range[1] - self.range[0]) // self.range[2] + 1) def __add__(self, value: float) -> "Sweeper": """Add value to sweeper ones.""" return self.model_copy( update=( {"range": (self.range[0] + value, self.range[1] + value, self.range[2])} if self.range is not None else {} ) | ({"values": self.values + value} if self.values is not None else {}) ) def __sub__(self, value: float) -> "Sweeper": """Subtract value from sweeper ones.""" return self + (-value) def __mul__(self, value: float) -> "Sweeper": """Multiply value to sweeper ones. TODO: deduplicate this and :meth:`__add__` """ return self.model_copy( update=( {"range": (self.range[0] * value, self.range[1] * value, self.range[2])} if self.range is not None else {} ) | ({"values": self.values * value} if self.values is not None else {}) ) def __truediv__(self, value: float) -> "Sweeper": """Divide by value from sweeper ones.""" return self * (1 / value)
ParallelSweepers = list[Sweeper] """Sweepers that should be iterated in parallel.""" def iteration_length(sweepers: ParallelSweepers) -> int: """Compute lenght of parallel iteration.""" return min((len(s) for s in sweepers), default=0) def swept_pulses( sweepers: list[ParallelSweepers], parameters: Collection[Parameter] = frozenset(Parameter), ) -> dict[PulseLike, Sweeper]: """Associate pulses swept to sweepers. Essentially, it produces a reverse index from `sweepers`. If `parameters` is passed, it limits the selection to pulses whose parameter swept is among those listed. By default, all swept pulses are returned. """ return { p: sweep for parsweep in sweepers for sweep in parsweep if sweep.parameter in parameters and sweep.pulses is not None for p in sweep.pulses }