qibocal.protocols.characterization.two_qubit_interaction package#
Submodules#
qibocal.protocols.characterization.two_qubit_interaction.chevron module#
SWAP experiment for two qubit gates, chevron plot.
- class qibocal.protocols.characterization.two_qubit_interaction.chevron.ChevronParameters(amplitude_min: float, amplitude_max: float, amplitude_step: float, duration_min: float, duration_max: float, duration_step: float, dt: Optional[int] = 0, nshots: Optional[int] = None, parking: bool = True)[source]#
Bases:
Parameters
CzFluxTime runcard inputs.
- class qibocal.protocols.characterization.two_qubit_interaction.chevron.ChevronResults(period: dict[str, float])[source]#
Bases:
Results
CzFluxTime outputs when fitting will be done.
- qibocal.protocols.characterization.two_qubit_interaction.chevron.ChevronType = dtype([('amp', '<f8'), ('length', '<f8'), ('prob', '<f8')])#
Custom dtype for Chevron.
- class qibocal.protocols.characterization.two_qubit_interaction.chevron.ChevronData(data: dict[tuple[typing.Union[str, int], typing.Union[str, int], typing.Union[str, int]], numpy.ndarray[typing.Any, numpy.dtype[dtype([('amp', '<f8'), ('length', '<f8'), ('prob', '<f8')])]]] = <factory>)[source]#
Bases:
Data
CzFluxTime acquisition outputs.
- data: dict[tuple[typing.Union[str, int], typing.Union[str, int], typing.Union[str, int]], numpy.ndarray[typing.Any, numpy.dtype[dtype([('amp', '<f8'), ('length', '<f8'), ('prob', '<f8')])]]]#
Data object to store arrays
- qibocal.protocols.characterization.two_qubit_interaction.chevron.fit_function(x, p0, p1, p2, p3)[source]#
Sinusoidal fit function.
- qibocal.protocols.characterization.two_qubit_interaction.chevron.chevron = Routine(acquisition=<function _aquisition>, fit=<function _fit>, report=<function _plot>)#
Chevron routine.
qibocal.protocols.characterization.two_qubit_interaction.cz_virtualz module#
CZ virtual correction experiment for two qubit gates, tune landscape.
- class qibocal.protocols.characterization.two_qubit_interaction.cz_virtualz.CZVirtualZParameters(theta_start: float, theta_end: float, theta_step: float, nshots: Optional[int] = None, relaxation_time: Optional[float] = None, dt: Optional[float] = 20, parking: bool = True)[source]#
Bases:
Parameters
CzVirtualZ runcard inputs.
- class qibocal.protocols.characterization.two_qubit_interaction.cz_virtualz.CZVirtualZResults(fitted_parameters: dict[tuple[str, Union[str, int]]], cz_angle: dict[tuple[Union[str, int], Union[str, int]], float], virtual_phase: dict[tuple[Union[str, int], Union[str, int]], float])[source]#
Bases:
Results
CzVirtualZ outputs when fitting will be done.
- class qibocal.protocols.characterization.two_qubit_interaction.cz_virtualz.CZVirtualZData(data: dict[tuple[typing.Union[str, int], typing.Union[str, int], str], numpy.ndarray[typing.Any, numpy.dtype[dtype([('target', '<f8'), ('control', '<f8')])]]] = <factory>, thetas: list = <factory>, vphases: dict[tuple[typing.Union[str, int], typing.Union[str, int]], dict[typing.Union[str, int], float]] = <factory>)[source]#
Bases:
Data
CZVirtualZ data.
- data: dict[tuple[typing.Union[str, int], typing.Union[str, int], str], numpy.ndarray[typing.Any, numpy.dtype[dtype([('target', '<f8'), ('control', '<f8')])]]]#
Data object to store arrays
- property global_params_dict#
Convert non-arrays attributes into dict.
- qibocal.protocols.characterization.two_qubit_interaction.cz_virtualz.create_sequence(platform: Platform, setup: str, target_qubit: Union[str, int], control_qubit: Union[str, int], ordered_pair: list[Union[str, int], Union[str, int]], parking: bool, dt: float) tuple[qibolab.pulses.PulseSequence, dict[Union[str, int], qibolab.pulses.Pulse], dict[Union[str, int], qibolab.pulses.Pulse], dict[Union[str, int], qibolab.pulses.Pulse]] [source]#
Create the experiment PulseSequence.
- qibocal.protocols.characterization.two_qubit_interaction.cz_virtualz.fit_function(x, p0, p1, p2)[source]#
Sinusoidal fit function.
- qibocal.protocols.characterization.two_qubit_interaction.cz_virtualz.cz_virtualz = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
CZ virtual Z correction routine.
qibocal.protocols.characterization.two_qubit_interaction.utils module#
- qibocal.protocols.characterization.two_qubit_interaction.utils.OrderedPair#
Pair object to discriminate high and low freq qubit.