qibocal.protocols.characterization package#
- class qibocal.protocols.characterization.Operation(value)[source]#
Bases:
Enum
An enumeration.
- resonator_spectroscopy = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- resonator_spectroscopy_attenuation = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- resonator_punchout = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- resonator_punchout_attenuation = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- resonator_flux = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- qubit_spectroscopy = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- qubit_flux = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- rabi_amplitude = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- rabi_length = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- rabi_length_sequences = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- ramsey = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- ramsey_sequences = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- t1 = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- t1_sequences = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- t2 = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- t2_sequences = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- time_of_flight_readout = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- single_shot_classification = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- spin_echo = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- allxy = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- allxy_drag_pulse_tuning = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- drag_pulse_tuning = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- flipping = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- dispersive_shift = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- chevron = Routine(acquisition=<function _aquisition>, fit=<function _fit>, report=<function _plot>)#
- cz_virtualz = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- standard_rb = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- readout_characterization = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- resonator_frequency = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- fast_reset = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
- zeno = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
Subpackages#
- qibocal.protocols.characterization.allxy package
- Submodules
- qibocal.protocols.characterization.allxy.allxy module
- qibocal.protocols.characterization.allxy.allxy_drag_pulse_tuning module
- qibocal.protocols.characterization.allxy.drag_pulse_tuning module
- qibocal.protocols.characterization.coherence package
- Submodules
- qibocal.protocols.characterization.coherence.spin_echo module
- qibocal.protocols.characterization.coherence.t1 module
- qibocal.protocols.characterization.coherence.t1_sequences module
- qibocal.protocols.characterization.coherence.t2 module
- qibocal.protocols.characterization.coherence.t2_sequences module
- qibocal.protocols.characterization.coherence.utils module
- qibocal.protocols.characterization.coherence.zeno module
- qibocal.protocols.characterization.flux_dependence package
- Submodules
- qibocal.protocols.characterization.flux_dependence.qubit_flux_dependence module
- qibocal.protocols.characterization.flux_dependence.resonator_flux_dependence module
- qibocal.protocols.characterization.flux_dependence.utils module
- qibocal.protocols.characterization.rabi package
- Submodules
- qibocal.protocols.characterization.rabi.amplitude module
- qibocal.protocols.characterization.rabi.length module
- qibocal.protocols.characterization.rabi.length_sequences module
- qibocal.protocols.characterization.rabi.utils module
- qibocal.protocols.characterization.randomized_benchmarking package
- Submodules
- qibocal.protocols.characterization.randomized_benchmarking.circuit_tools module
- qibocal.protocols.characterization.randomized_benchmarking.data module
- qibocal.protocols.characterization.randomized_benchmarking.fitting module
- qibocal.protocols.characterization.randomized_benchmarking.noisemodels module
- qibocal.protocols.characterization.randomized_benchmarking.standard_rb module
- qibocal.protocols.characterization.randomized_benchmarking.utils module
- qibocal.protocols.characterization.two_qubit_interaction package
- Submodules
- qibocal.protocols.characterization.two_qubit_interaction.chevron module
- qibocal.protocols.characterization.two_qubit_interaction.cz_virtualz module
- qibocal.protocols.characterization.two_qubit_interaction.utils module
Submodules#
qibocal.protocols.characterization.classification module#
- class qibocal.protocols.characterization.classification.SingleShotClassificationParameters(nshots: ~typing.Optional[int] = None, relaxation_time: ~typing.Optional[int] = None, classifiers_list: ~typing.Optional[list[str]] = <factory>, savedir: ~typing.Optional[str] = ' ')[source]#
Bases:
Parameters
SingleShotClassification runcard inputs.
- qibocal.protocols.characterization.classification.ClassificationType = dtype([('i', '<f8'), ('q', '<f8'), ('state', '<i8')])#
Custom dtype for rabi amplitude.
- class qibocal.protocols.characterization.classification.SingleShotClassificationData(nshots: int, classifiers_list: Optional[str], hpars: dict[typing.Union[str, int], dict], savedir: str, data: dict[tuple[typing.Union[str, int], int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('i', '<f8'), ('q', '<f8'), ('state', '<i8')])]]] = <factory>)[source]#
Bases:
Data
- data: dict[tuple[typing.Union[str, int], int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('i', '<f8'), ('q', '<f8'), ('state', '<i8')])]]]#
Raw data acquired.
- class qibocal.protocols.characterization.classification.SingleShotClassificationResults(benchmark_table: dict[Union[str, int], pandas.core.frame.DataFrame], y_tests: dict[Union[str, int], list], x_tests: dict[Union[str, int], list], models: dict[Union[str, int], list], names: list, hpars: dict[Union[str, int], dict], threshold: dict[Union[str, int], float], rotation_angle: dict[Union[str, int], float], mean_gnd_states: dict[Union[str, int], list[float]], mean_exc_states: dict[Union[str, int], list[float]], fidelity: dict[Union[str, int], float], assignment_fidelity: dict[Union[str, int], float], savedir: str)[source]#
Bases:
Results
SingleShotClassification outputs.
qibocal.protocols.characterization.dispersive_shift module#
- class qibocal.protocols.characterization.dispersive_shift.DispersiveShiftParameters(freq_width: int, freq_step: int, nshots: Optional[int] = None, relaxation_time: Optional[int] = None)[source]#
Bases:
Parameters
Dispersive shift inputs.
- class qibocal.protocols.characterization.dispersive_shift.StateResults(frequency: dict[Union[str, int], float], fitted_parameters: dict[Union[str, int], dict[str, float]])[source]#
Bases:
Results
Resonator spectroscopy outputs.
- class qibocal.protocols.characterization.dispersive_shift.DispersiveShiftResults(results_0: StateResults, results_1: StateResults, best_freq: dict[Union[str, int], float], best_iqs: dict[Union[str, int], numpy.ndarray[Any, numpy.dtype[numpy.float64]]])[source]#
Bases:
Results
Dispersive shift outputs.
- results_0: StateResults#
Resonator spectroscopy outputs in the ground state.
- results_1: StateResults#
Resonator spectroscopy outputs in the excited state
- qibocal.protocols.characterization.dispersive_shift.DispersiveShiftType = dtype([('freq', '<f8'), ('i', '<f8'), ('q', '<f8'), ('msr', '<f8'), ('phase', '<f8')])#
Custom dtype for rabi amplitude.
- class qibocal.protocols.characterization.dispersive_shift.DispersiveShiftData(resonator_type: str, data: dict[tuple[typing.Union[str, int], int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('freq', '<f8'), ('i', '<f8'), ('q', '<f8'), ('msr', '<f8'), ('phase', '<f8')])]]] = <factory>)[source]#
Bases:
Data
Dipsersive shift acquisition outputs.
- data: dict[tuple[typing.Union[str, int], int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('freq', '<f8'), ('i', '<f8'), ('q', '<f8'), ('msr', '<f8'), ('phase', '<f8')])]]]#
Data object to store arrays
- qibocal.protocols.characterization.dispersive_shift.dispersive_shift = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
Dispersive shift Routine object.
qibocal.protocols.characterization.flipping module#
- class qibocal.protocols.characterization.flipping.FlippingParameters(nflips_max: int, nflips_step: int, nshots: Optional[int] = None, relaxation_time: Optional[int] = None)[source]#
Bases:
Parameters
Flipping runcard inputs.
- class qibocal.protocols.characterization.flipping.FlippingResults(amplitude: dict[Union[str, int], float], amplitude_factors: dict[Union[str, int], float], fitted_parameters: dict[Union[str, int], dict[str, float]])[source]#
Bases:
Results
Flipping outputs.
- class qibocal.protocols.characterization.flipping.FlippingData(resonator_type: str, pi_pulse_amplitudes: dict[typing.Union[str, int], float], data: dict[typing.Union[str, int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('flips', '<f8'), ('msr', '<f8')])]]] = <factory>)[source]#
Bases:
Data
Flipping acquisition outputs.
- data: dict[typing.Union[str, int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('flips', '<f8'), ('msr', '<f8')])]]]#
Raw data acquired.
- qibocal.protocols.characterization.flipping.flipping_fit(x, offset, amplitude, omega, phase, gamma)[source]#
- qibocal.protocols.characterization.flipping.flipping = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
Flipping Routine object.
qibocal.protocols.characterization.qubit_spectroscopy module#
- class qibocal.protocols.characterization.qubit_spectroscopy.QubitSpectroscopyParameters(freq_width: int, freq_step: int, drive_duration: int, drive_amplitude: Optional[float] = None, nshots: Optional[int] = None, relaxation_time: Optional[int] = None)[source]#
Bases:
Parameters
QubitSpectroscopy runcard inputs.
- class qibocal.protocols.characterization.qubit_spectroscopy.QubitSpectroscopyResults(frequency: dict[Union[str, int], dict[str, float]], amplitude: dict[Union[str, int], float], fitted_parameters: dict[Union[str, int], dict[str, float]])[source]#
Bases:
Results
QubitSpectroscopy outputs.
- class qibocal.protocols.characterization.qubit_spectroscopy.QubitSpectroscopyData(resonator_type: str, amplitudes: dict[typing.Union[str, int], float], data: dict[typing.Union[str, int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('freq', '<f8'), ('msr', '<f8'), ('phase', '<f8')])]]] = <factory>, power_level: ~typing.Optional[~qibocal.protocols.characterization.utils.PowerLevel] = None)[source]#
Bases:
ResonatorSpectroscopyData
QubitSpectroscopy acquisition outputs.
- qibocal.protocols.characterization.qubit_spectroscopy.qubit_spectroscopy = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
QubitSpectroscopy Routine object.
qibocal.protocols.characterization.ramsey module#
- class qibocal.protocols.characterization.ramsey.RamseyParameters(delay_between_pulses_start: int, delay_between_pulses_end: int, delay_between_pulses_step: int, n_osc: Optional[int] = 0, nshots: Optional[int] = None, relaxation_time: Optional[int] = None)[source]#
Bases:
Parameters
Ramsey runcard inputs.
- class qibocal.protocols.characterization.ramsey.RamseyResults(frequency: dict[Union[str, int], float], t2: dict[Union[str, int], float], delta_phys: dict[Union[str, int], float], fitted_parameters: dict[Union[str, int], dict[str, float]])[source]#
Bases:
Results
Ramsey outputs.
- qibocal.protocols.characterization.ramsey.RamseyType = dtype([('wait', '<f8'), ('msr', '<f8'), ('phase', '<f8')])#
Custom dtype for coherence routines.
- class qibocal.protocols.characterization.ramsey.RamseyData(n_osc: int, t_max: int, detuning_sign: int, qubit_freqs: dict[typing.Union[str, int], float] = <factory>, data: dict[typing.Union[str, int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('wait', '<f8'), ('msr', '<f8'), ('phase', '<f8')])]]] = <factory>)[source]#
Bases:
Data
Ramsey acquisition outputs.
- data: dict[typing.Union[str, int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('wait', '<f8'), ('msr', '<f8'), ('phase', '<f8')])]]]#
Raw data acquired.
- qibocal.protocols.characterization.ramsey.ramsey = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
Ramsey Routine object.
qibocal.protocols.characterization.ramsey_sequences module#
- qibocal.protocols.characterization.ramsey_sequences.ramsey_sequences = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
Ramsey Routine object.
qibocal.protocols.characterization.readout_characterization module#
- class qibocal.protocols.characterization.readout_characterization.ReadoutCharacterizationParameters(nshots: Optional[int] = None, relaxation_time: Optional[int] = None)[source]#
Bases:
Parameters
ReadoutCharacterization runcard inputs.
- class qibocal.protocols.characterization.readout_characterization.ReadoutCharacterizationResults(fidelity: dict[Union[str, int], float], qnd: dict[Union[str, int], float], Lambda_M: dict[Union[str, int], float])[source]#
Bases:
Results
ReadoutCharacterization outputs.
- qibocal.protocols.characterization.readout_characterization.ReadoutCharacterizationType = dtype([('probability', '<f8')])#
Custom dtype for ReadoutCharacterization.
- class qibocal.protocols.characterization.readout_characterization.ReadoutCharacterizationData(data: dict[tuple[typing.Union[str, int], int, bool], numpy.ndarray[typing.Any, numpy.dtype[dtype([('probability', '<f8')])]]] = <factory>)[source]#
Bases:
Data
ReadoutCharacterization acquisition outputs.
- data: dict[tuple[typing.Union[str, int], int, bool], numpy.ndarray[typing.Any, numpy.dtype[dtype([('probability', '<f8')])]]]#
Raw data acquired.
- qibocal.protocols.characterization.readout_characterization.readout_characterization = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
ReadoutCharacterization Routine object.
qibocal.protocols.characterization.resonator_punchout module#
- class qibocal.protocols.characterization.resonator_punchout.ResonatorPunchoutParameters(freq_width: int, freq_step: int, min_amp_factor: float, max_amp_factor: float, step_amp_factor: float, amplitude: Optional[float] = None, nshots: Optional[int] = None, relaxation_time: Optional[int] = None)[source]#
Bases:
Parameters
“ResonatorPunchout runcard inputs.
- class qibocal.protocols.characterization.resonator_punchout.ResonatorPunchoutResults(readout_frequency: dict[Union[str, int], float], bare_frequency: Optional[dict[Union[str, int], float]], readout_amplitude: dict[Union[str, int], float])[source]#
Bases:
Results
ResonatorPunchout outputs.
- qibocal.protocols.characterization.resonator_punchout.ResPunchoutType = dtype([('freq', '<f8'), ('amp', '<f8'), ('msr', '<f8'), ('phase', '<f8')])#
Custom dtype for resonator punchout.
- class qibocal.protocols.characterization.resonator_punchout.ResonatorPunchoutData(resonator_type: str, amplitudes: dict[typing.Union[str, int], float], data: dict[typing.Union[str, int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('freq', '<f8'), ('amp', '<f8'), ('msr', '<f8'), ('phase', '<f8')])]]] = <factory>)[source]#
Bases:
Data
ResonatorPunchout data acquisition.
- data: dict[typing.Union[str, int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('freq', '<f8'), ('amp', '<f8'), ('msr', '<f8'), ('phase', '<f8')])]]]#
Raw data acquired.
- qibocal.protocols.characterization.resonator_punchout.resonator_punchout = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
ResonatorPunchout Routine object.
qibocal.protocols.characterization.resonator_punchout_attenuation module#
- class qibocal.protocols.characterization.resonator_punchout_attenuation.ResonatorPunchoutAttenuationParameters(freq_width: int, freq_step: int, min_att: int, max_att: int, step_att: int, nshots: Optional[int] = None, relaxation_time: Optional[int] = None)[source]#
Bases:
Parameters
ResonatorPunchoutAttenuation runcard inputs.
- class qibocal.protocols.characterization.resonator_punchout_attenuation.ResonatorPunchoutAttenuationResults(readout_frequency: dict[Union[str, int], float], bare_frequency: Optional[dict[Union[str, int], float]], readout_attenuation: dict[Union[str, int], int])[source]#
Bases:
Results
ResonatorPunchoutAttenation outputs.
- qibocal.protocols.characterization.resonator_punchout_attenuation.ResPunchoutAttType = dtype([('freq', '<f8'), ('att', '<f8'), ('msr', '<f8'), ('phase', '<f8')])#
Custom dtype for resonator punchout.
- class qibocal.protocols.characterization.resonator_punchout_attenuation.ResonatorPunchoutAttenuationData(resonator_type: str, data: dict[typing.Union[str, int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('freq', '<f8'), ('att', '<f8'), ('msr', '<f8'), ('phase', '<f8')])]]] = <factory>)[source]#
Bases:
Data
ResonatorPunchoutAttenuation data acquisition.
- data: dict[typing.Union[str, int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('freq', '<f8'), ('att', '<f8'), ('msr', '<f8'), ('phase', '<f8')])]]]#
Raw data acquired.
- qibocal.protocols.characterization.resonator_punchout_attenuation.resonator_punchout_attenuation = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
ResonatorPunchoutAttenuation Routine object.
qibocal.protocols.characterization.resonator_spectroscopy module#
- class qibocal.protocols.characterization.resonator_spectroscopy.ResonatorSpectroscopyParameters(freq_width: int, freq_step: int, power_level: PowerLevel, amplitude: Optional[float] = None, nshots: Optional[int] = None, relaxation_time: Optional[int] = None)[source]#
Bases:
Parameters
ResonatorSpectroscopy runcard inputs.
- power_level: PowerLevel#
Power regime (low or high). If low the readout frequency will be updated. If high both the readout frequency and the bare resonator frequency will be updated.
- class qibocal.protocols.characterization.resonator_spectroscopy.ResonatorSpectroscopyResults(frequency: dict[typing.Union[str, int], float], fitted_parameters: dict[typing.Union[str, int], dict[str, float]], bare_frequency: ~typing.Optional[dict[typing.Union[str, int], float]] = <factory>, amplitude: ~typing.Optional[dict[typing.Union[str, int], float]] = <factory>, attenuation: ~typing.Optional[dict[typing.Union[str, int], int]] = <factory>)[source]#
Bases:
Results
ResonatorSpectroscopy outputs.
- bare_frequency: Optional[dict[Union[str, int], float]]#
Bare resonator frequency [GHz] for each qubit.
- property update#
Method overwritten from Results to not update amplitude when running resonator spectroscopy at high power.
- qibocal.protocols.characterization.resonator_spectroscopy.ResSpecType = dtype([('freq', '<f8'), ('msr', '<f8'), ('phase', '<f8')])#
Custom dtype for resonator spectroscopy.
- class qibocal.protocols.characterization.resonator_spectroscopy.ResonatorSpectroscopyData(resonator_type: str, amplitudes: dict[typing.Union[str, int], float], data: dict[typing.Union[str, int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('freq', '<f8'), ('msr', '<f8'), ('phase', '<f8')])]]] = <factory>, power_level: ~typing.Optional[~qibocal.protocols.characterization.utils.PowerLevel] = None)[source]#
Bases:
Data
Data structure for resonator spectroscopy.
- data: dict[typing.Union[str, int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('freq', '<f8'), ('msr', '<f8'), ('phase', '<f8')])]]]#
Raw data acquired.
- power_level: Optional[PowerLevel] = None#
Power regime of the resonator.
- qibocal.protocols.characterization.resonator_spectroscopy.resonator_spectroscopy = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
ResonatorSpectroscopy Routine object.
qibocal.protocols.characterization.resonator_spectroscopy_attenuation module#
- class qibocal.protocols.characterization.resonator_spectroscopy_attenuation.ResonatorSpectroscopyAttenuationParameters(freq_width: int, freq_step: int, power_level: PowerLevel, nshots: Optional[int] = None, relaxation_time: Optional[int] = None, amplitude: Optional[float] = None, attenuation: Optional[int] = None)[source]#
Bases:
Parameters
ResonatorSpectroscopy runcard inputs.
- power_level: PowerLevel#
Power regime (low or high). If low the readout frequency will be updated. If high both the readout frequency and the bare resonator frequency will be updated.
- class qibocal.protocols.characterization.resonator_spectroscopy_attenuation.ResonatorSpectroscopyAttenuationResults(frequency: dict[typing.Union[str, int], float], fitted_parameters: dict[typing.Union[str, int], dict[str, float]], bare_frequency: ~typing.Optional[dict[typing.Union[str, int], float]] = <factory>, amplitude: ~typing.Optional[dict[typing.Union[str, int], float]] = <factory>, attenuation: ~typing.Optional[dict[typing.Union[str, int], int]] = <factory>)[source]#
Bases:
Results
ResonatorSpectroscopy outputs.
- class qibocal.protocols.characterization.resonator_spectroscopy_attenuation.ResonatorSpectroscopyAttenuationData(resonator_type: str, amplitudes: dict[typing.Union[str, int], float], data: dict[typing.Union[str, int], numpy.ndarray[typing.Any, numpy.dtype[dtype([('freq', '<f8'), ('msr', '<f8'), ('phase', '<f8')])]]] = <factory>, power_level: ~typing.Optional[~qibocal.protocols.characterization.utils.PowerLevel] = None, attenuations: dict[typing.Union[str, int], int] = <factory>)[source]#
Bases:
ResonatorSpectroscopyData
Data structure for resonator spectroscopy with attenuation.
- qibocal.protocols.characterization.resonator_spectroscopy_attenuation.resonator_spectroscopy_attenuation = Routine(acquisition=<function _acquisition>, fit=<function _fit>, report=<function _plot>)#
ResonatorSpectroscopyAttenuation Routine object.
qibocal.protocols.characterization.test module#
qibocal.protocols.characterization.two module#
qibocal.protocols.characterization.utils module#
- class qibocal.protocols.characterization.utils.PowerLevel(value)[source]#
-
Power Regime for Resonator Spectroscopy
- high = 'high'#
- low = 'low'#
- qibocal.protocols.characterization.utils.lorentzian(frequency, amplitude, center, sigma, offset)[source]#
- qibocal.protocols.characterization.utils.lorentzian_fit(data, resonator_type=None, fit=None)[source]#
- qibocal.protocols.characterization.utils.cumulative(input_data, points)[source]#
Evaluates in data the cumulative distribution function of points. WARNING: input_data and points should be sorted data.
- qibocal.protocols.characterization.utils.fit_punchout(data: Data, fit_type: str)[source]#
Punchout fitting function.
Args:
data (Data): Punchout acquisition data. fit_type (str): Punchout type, it could be amp (amplitude) or att (attenuation).
Return:
List of dictionaries containing the low, high amplitude (attenuation) frequencies and the readout amplitude (attenuation) for each qubit.